首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   5篇
  1998年   1篇
  1996年   1篇
  1979年   1篇
排序方式: 共有25条查询结果,搜索用时 449 毫秒
1.
v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.  相似文献   
2.
Loss of connexin expression and/or gap junctional communication (GJC) has been correlated with increased rates of cell growth in tumor cells compared to their normal communication-competent counterparts. Conversely, reduced rates of cell growth have been observed in tumor cells that are induced to express exogenous connexins and re-establish GJC. It is not clear how this putative growth-suppressive effect of the connexin proteins is mediated and some data has suggested that this function may be independent of GJC. In mammalian cells that express v-Src, connexin43 (Cx43) is phosphorylated on Tyr247 and Tyr265 and this results in a dramatic disruption of GJC. Cells that express a Cx43 mutant with phenylalanine mutations at these tyrosine sites form functional gap junctions that, unlike junctions formed by wild type Cx43, remain functional in cells that co-express v-Src. These cells still appear transformed; however, it is not known whether their ability to maintain GJC prevents the loss of growth restraints that confine “normal” cells, such as the inability to grow in an anchorage-independent manner or to form foci. In these studies, we have examined some of the growth properties of cells with Cx43 gap junctions that remain communication-competent in the presence of the co-expressed v-Src oncoprotein.  相似文献   
3.
Cdc37 is a molecular chaperone required for folding of protein kinases. It functions in association with Hsp90, although little is known of its mechanism of action or where it fits into a folding pathway involving other Hsp90 cochaperones. Using a genetic approach with Saccharomyces cerevisiae, we show that CDC37 overexpression suppressed a defect in v-Src folding in yeast deleted for STI1, which recruits Hsp90 to misfolded clients. Expression of CDC37 truncation mutants that were deleted for the Hsp90-binding site stabilized v-Src and led to some folding in both sti1Delta and hsc82Delta strains. The protein kinase-binding domain of Cdc37 was sufficient for yeast cell viability and permitted efficient signaling through the yeast MAP kinase-signaling pathway. We propose a model in which Cdc37 can function independently of Hsp90, although its ability to do so is restricted by its normally low expression levels. This may be a form of regulation by which cells restrict access to Cdc37 until it has passed through a triage involving other chaperones such as Hsp70 and Hsp90.  相似文献   
4.
5.
Gap junctional communication, which is mediated by the connexin protein family, is essential for the maintenance of normal tissue function and homeostasis. Loss of intercellular communication results in a failure to coordinately regulate cellular functions, and it can facilitate tumorigenesis. Expression of oncogenes and stimulation with cytokines has been shown to suppress intercellular communication; however, the exact mechanism by which intercellular communication is disrupted by these factors remains uncertain. In this report, we show that Akt is essential for the disruption of gap junctional communication in v-Src-transformed cells. In addition, inhibition of Akt restores gap junctional communication after it is suppressed by TNF-α signaling. Furthermore, we demonstrate that the expression of a constitutively active form of Akt1, but not of Akt2 or Akt3, is sufficient to suppress gap junctional communication. Our results clearly define Akt1 as one of the critical regulators of gap junctional communication.  相似文献   
6.
Active, wild-type v-Src and its kinase-dead double Y416F-K295N mutant were expressed in hamster fibroblasts. Expression of the active v-Src induced activation of endogenous c-Src and increased general protein-tyrosine phosphorylation in the infected cells. Expression of the kinase-dead mutant induced hypophosphorylation of Tyr416 of the endogenous c-Src. The inactivation of c-Src was reversible, as confirmed by in vitro kinase activity of c-Src immunoprecipitated from the kinase-dead v-Src-expressing cells. Both activation and inactivation of c-Src may be explained by direct interaction of the v-Src and c-Src that may either facilitate transphosphorylation of the regulatory Tyr416 in the activation loop, or prevent it by formation of transient dead-end complexes of the Y416F-K295N mutant with c-Src. The interaction was also indicated by co-localization of v- and c-Src proteins in immunofluorescent images of the infected cells. These results suggest that dimerization of Src plays an important role in the regulation of Src tyrosine kinase activity.  相似文献   
7.
Cancer cells are exposed to external and internal stresses by virtue of their unrestrained growth, hostile microenvironment, and increased mutation rate. These stresses impose a burden on protein folding and degradation pathways and suggest a route for therapeutic intervention in cancer. Proteasome and Hsp90 inhibitors are in clinical trials and a 20S proteasome inhibitor, Velcade, is an approved drug. Other points of intervention in the folding and degradation pathway may therefore be of interest. We describe a simple screen for inhibitors of protein synthesis, folding, and proteasomal degradation pathways in this paper. The molecular chaperone-dependent client v-Src was fused to firefly luciferase and expressed in HCT-116 colorectal tumor cells. Both luciferase and protein tyrosine kinase activity were preserved in cells expressing this fusion construct. Exposing these cells to the Hsp90 inhibitor geldanamycin caused a rapid reduction of luciferase and kinase activities and depletion of detergent-soluble v-Src::luciferase fusion protein. Hsp70 knockdown reduced v-Src::luciferase activity and, when combined with geldanamycin, caused a buildup of v-Src::luciferase and ubiquitinated proteins in a detergent-insoluble fraction. Proteasome inhibitors also decreased luciferase activity and caused a buildup of phosphotyrosine-containing proteins in a detergent-insoluble fraction. Protein synthesis inhibitors also reduced luciferase activity, but had less of an effect on phosphotyrosine levels. In contrast, certain histone deacetylase inhibitors increased luciferase and phosphotyrosine activity. A mass screen led to the identification of Hsp90 inhibitors, ubiquitin pathway inhibitors, inhibitors of Hsp70/Hsp40-mediated refolding, and protein synthesis inhibitors. The largest group of compounds identified in the screen increased luciferase activity, and some of these increase v-Src levels and activity. When used in conjunction with appropriate secondary assays, this screen is a powerful cell-based tool for studying compounds that affect protein synthesis, folding, and degradation.  相似文献   
8.
Vinexin is an adaptor-type focal adhesion protein that interacts with vinculin. Here, we report the tyrosine phosphorylation of vinexin α in v-Src-transformed NIH3T3 cells. Point mutational analysis of vinexin α clarified that three tyrosine residues in vinexin α were phosphorylated. A non-phosphorylatable mutant of vinexin α had higher binding affinity for vinculin than its wild-type counterpart. In conclusion, vinexin α is tyrosine phosphorylated in v-Src-transformed cells, and this tyrosine phosphorylation of vinexin α attenuates the association of vinexin α with vinculin.  相似文献   
9.
We addressed the role of Src on cortical actin dynamics and polarized endocytosis in MDCK cells harboring a thermosensitive v-src mutant. Shifting monolayers established at 40 degrees C (non-permissive temperature) to 34 degrees C (permissive temperature) rapidly reactivated v-Src kinase, but tight junctions and cell polarity resisted for >6 h. At this interval, activated v-src was recruited on apical vesicles, induced cortactin-associated apical circular ruffles productive of macropinosomes, thereby accelerating apical pinocytosis by approximately fivefold. Ruffling and macropinosome formation were selectively abrogated by inhibitors of actin polymerization, phosphoinositide 3-kinase, phospholipase C, and phospholipase D, which all returned apical pinocytosis to the level observed at 40 degrees C, underscoring the distinct control of apical micropinocytosis and macropinocytosis. Src promoted microtubule-dependent fusion of macropinosomes to the apical recycling endosome (ARE), causing its strong vacuolation. However, preservation of tubulation and apical polarity indicated that its function was not affected. The ARE was labeled for v-src, Rab11, and rabankyrin-5 but not early endosome antigen 1, thus distinguishing two separate Rab5-dependent apical pathways. The mechanisms of Src-induced apical ruffling and macropinocytosis could shed light on the triggered apical enteroinvasive pathogens entry and on the apical differentiation of osteoclasts.  相似文献   
10.
In the cells transformed by Rous sarcoma virus (RSV), two Src proteins are expressed: the ubiquitous tyrosine kinase c-Src and the v-Src, the product of the transforming gene of the virus. Using three synthetic peptide substrates widely used for testing Src kinase activity, we show that they are phosphorylated with different efficiencies by the v-Src and c-Src tyrosine kinases immunoprecipitated from the tumor cell line H19. The v-Src displays higher efficiency (Vmax/Km ratio) toward all three peptides used, but the Vmax of v-Src is much lower than Vmax of c-Src with two peptides out of three. This difference in substrate specificity, if ignored, may cause misestimation of the amounts of active c-Src and v-Src in RSV-transformed cells. On the other hand, the different peptide substrate specificities may also reflect different protein substrate specificities of the v-Src and c-Src kinases in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号