首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   9篇
  国内免费   30篇
  2023年   2篇
  2022年   7篇
  2021年   5篇
  2020年   7篇
  2019年   10篇
  2018年   9篇
  2017年   4篇
  2016年   14篇
  2015年   10篇
  2014年   13篇
  2013年   47篇
  2012年   5篇
  2011年   13篇
  2010年   8篇
  2009年   19篇
  2008年   10篇
  2007年   19篇
  2006年   21篇
  2005年   16篇
  2004年   11篇
  2003年   12篇
  2002年   15篇
  2001年   19篇
  2000年   13篇
  1999年   8篇
  1998年   9篇
  1997年   8篇
  1996年   5篇
  1995年   12篇
  1994年   6篇
  1993年   11篇
  1992年   10篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1986年   3篇
  1985年   6篇
  1984年   9篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   6篇
  1973年   1篇
排序方式: 共有427条查询结果,搜索用时 78 毫秒
1.
Nitrogen dioxide less than 100 ppm in air induced lipid peroxidation of liposome composed of l-palmitoyl-2-arachidonylphosphatidylcholine as assessed by thiobarbituric acid reactivity. The nitrogen dioxide-induced lipid peroxidation was enhanced by cysteine, glutathione and bovine serum albumin. While the activity of nitrogen dioxide in air to induce single strand breaks of supercoiled plasmid DNA was low, the breaking was remarkably enhanced by cysteine, glutathione and bovine serum albumin. ESR spin trapping using 5,5-dimethyl-1-pyrroline N-oxide showed that certain strong oxidant(s) were generated by interaction of nitrogen dioxide and cysteine. The spin trapping using 3,5-dibromo-4-nitrosobenzene-sulfonate suggested that sulfur-containing radicals were generated by interaction of nitrogen dioxide and cysteine or glutathione. Hence, certain sulfur-containing radicals generated by the interaction which could effectively induce lipid peroxidation and DNA strand breaks.  相似文献   
2.
A survey of chemical composition of 23 species of Asarum subgenus Heterotropa showed that the five groups could be distinguished on the basis of the presence or absence of asatone, phenol ethers and terpenes.  相似文献   
3.
Mineralization of trace levels of [14C]-phenol by heterotrophic microorganisms was quantified at 4 sites along a river continuum in southwestern Virginia. Significant phenol mineralization rates were detected in surface sediment and seston samples at all sites from August 1985 through May 1986. Phenol degradation was strongly affected by season (ANOVA; P < 0.0001). From a baseline rate in August (range: 1.19 × 10-5 to 897 × 10-4 mg phenol mineralized mg AFDW-1 h-1) phenol mineralization rose to a yearly maximum in October (range: 1.21 × 10-4 to 1.16 × 10-3 mg phenol mineralized mg AFDW-1 h-1) despite decreasing stream temperatures. This autumnal peak in phenol degradation was attributed to the pulsed input of allochthonous detritus, especially leaf litter, which contains substantial quantities of phenols and related compounds. Although phenol mineralization was significant in these streams, phenols were metabolized at much slower rates than more labile compounds present in the dissolved organic matter (DOM) pool. Estimates of turnover rates for three major components of DOM revealed that glucose and glutamate turnover rates (0.064–0.140 h-1 mg sediment AFDW-1 and 0.140–0.610 h-1 mg sediment AFDW-1, respectively) were, respectively, 2.2–4.7 × and 9.6–16.9 × greater than phenol turnover rates (0.015–0.064 h-1 mg sediment AFDW-1). Although the relatively low rates of utilization of refractory phenolic materials suggest that these compounds may accumulate and become more prevalent components of the DOM pool, phenol concentrations at the 4 study sites remained below detectable levels (i.e., < 1 g 1-1) throughout the study. Consequently, it seems that although phenolic materials are metabolized more slowly than labile DOM, phenols are degraded at rates which preclude accumulation in the water column.  相似文献   
4.
Visible absorption and CD spectral and potentiometric studies on the His- and Tyr-containing ternary copper(II) complexes Cu(A)(L-B), where A refers to L-His, D-His, or L-Tyr and B to Lys, Tyr, Trp, Phe, Ala, Val, Arg, Glu, Asn, Gln, Ser, or Thr, were made to study ligand-ligand interactions in the complexes. While the CD spectral magnitudes in the d—d region are additive in the absence of side chain interactions and can be estimated from the magnitudes for the ternary systems involving DL-A or DL-B, deviation from the additivity was observed for Cu(L-His)(L-B) (B = LysH, Tyr, Trp, or Phe) and Cu(L-Tyr)(L-Trp). From the stability constants determined at 25 °C and I = 0.1 M (KNO3), the equilibrium constants, K, for the following hypothetical equilibria were calculated to be large (0.14–0.60) for formation of Cu(L-/D-His)(L-B)(B = Tyr or Trp) and Cu(D-His)(L-Phe) with Cu(en)(L-Ala) as standard: Cu(A)(L?Ala)+Cu(en)(L?b)?KCu(A)(L?B)+Cu(en)(L?Ala) The positive values indicate the stabilization due to the stacking between the imidazole ring of His and the aromatic side chain of L-B. Solvent dependence of the CD spectra for Cu(L-His)(L-LysH) and Cu(L-His) L-Trp) further supported the existence of the intramolecular electrostatic and hydrophobic interactions.  相似文献   
5.
6.
The effect of phorbol myristate acetate, phorbol dibutyrate, ethanol, dimethylsulfoxide, phenol, and seven metabolites of phenol on metabolic cooperation were assessed as a function of mutant cell recovery from populations of cocultivated hypoxanthine-guanine phosphoribosyl transferase-deficient mutant (HGPRT–) and wild-type (HGPRT+) Chinese hamster V79 lung fibroblasts. Phorbol myristate acetate and phorbol diputyrate, two established tumor promoters, were potent inhibitors of metabolic cooperation. Ethanol and dimethylsulfoxide, solvents commonly used to prepare chemicals for testing, weakly inhibited metabolic cooperation. Phenol and phenylglucuronide had no effect on metabolic cooperation. Four oxidative metabolites (1,4-benzoquinone, catechol, hydroxyquinol and quinol) inhibited metabolic cooperation. Phenylsulfate weakly inhibited metabolic cooperation. Conversely, 2-methoxyphenol, a methylated derivative of catechol, appeared to enhance metabolic cooperation. These results generallyAbbreviations CAS Chemical Abstracts Service - DMSO dimethylsulfoxide - ETOH ethanol - HGPRT hypoxanthine-guanine phosphoribosyl transferase - HGPRT+ HGPRT-competent - HGPRT– HGPRT-te]deficient - MC metabolic cooperation - MC+ metabolic cooperation-competent - MC– metabolic cooperation-deficient - MEM minimum essential medium - PDBu phorbol dibutyrate - PMA phorbol myristate acetate - 6TG 6-thioguanine - 6TGr 6-thioguanine-resistant - 6TGs 6-thioguanine-sensitive - V79/MC assay Chinese hamster V79 lung fibroblast assay for metabolic cooperation  相似文献   
7.
In vivo interactions of acrylonitrile with macromolecules in rats   总被引:1,自引:0,他引:1  
The irreversible binding of [2,3-14C]acrylonitrile (VCN) to proteins, RNA and DNA of various tissues of male Sprague-Dawley rats after a single oral dose of 46.5 mg/kg (0.5 LD50) has been studied. Proteins were isolated by chloroform-isoamyl alcohol-phenol extraction. RNA and DNA were separated by hydroxyapatite chromatography. Binding of VCN to proteins was extensive and was time dependent. Radioactivity in nucleic acids was registered in the liver and the target organs, stomach and brain. DNA alkylation, which increased by time, was significantly higher in the target organs, brain and stomach (119 and 81 pmol/mg, respectively, at 24 h) than that in the liver. The covalent binding indices for the liver, stomach and brain at 24 h after dosing were, 5.9, 51.9 and 65.3, respectively. These results suggest that VCN is able to act as a multipotent carcinogen by alkylation of DNA in the extrahepatic target tissues, stomach and brain.  相似文献   
8.
The imperfect ascomycetous yeastsCandida parapsilosis andArxula adeninivorans degraded 3-hydroxybenzoic acid via gentisate which was the cleavage substrate. 4-Hydroxybenzoic acid was metabolized via protocatechuate. No cleavage enzyme for the latter was detected. In stead of this NADH- and NADPH-dependent monooxygenases were present. In cells grown at the expense of hydroquinone and 4-hydroxygenzoic acid, enzymes of the hydroxyhydroquinone variant of the 3-oxoadipate pathway were demonstrated, which also took part in the degradation of 2,4-dihydroxybenzoic acid byC. parapsilosis.Abbreviations HHQ Hydroxyhydroquinone (1,2,4-trihydroxybenzene) - GSH reduced Glutathione  相似文献   
9.
A 4-chlorophenol (4-CP)-degrading bacterium, strain CPW301, was isolated from soil and identified as Comamonas testosteroni. This strain dechlorinated and degraded 4-CP via a meta-cleavage pathway. CPW301 could also utilize phenol as a carbon and energy source without the accumulation of any metabolites via the same meta-cleavage pathway. When phenol was added as a additional substrate, CPW301 could degrade 4-CP and phenol simultaneously. The addition of phenol greatly accelerated the degradation of 4-CP due to the increased cell mass. The simultaneous degradation of the 4-CP and phenol is useful not only for enhanced cell growth but also for the bioremediation of both compounds, which are normally present in hazardous waste sites as a mixture.  相似文献   
10.
We present here microwave-based modifications of standard protein assays that dramatically reduce the time required to determine protein concentrations. Typical protein determinations involve incubation times ranging from 15–60 min. Microwave irradiation of specimens reduces this time requirement to 10–20 s without compromising accuracy or reliability. The remarkable speed with which protein determinations may be carried out using microwave enhancement greatly simplifies general laboratory procedures that depend on the estimation of protein concentrations. An erratum to this article is available at .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号