首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   772篇
  免费   45篇
  国内免费   5篇
  2024年   1篇
  2023年   8篇
  2022年   3篇
  2021年   7篇
  2020年   26篇
  2019年   20篇
  2018年   12篇
  2017年   23篇
  2016年   23篇
  2015年   11篇
  2014年   12篇
  2013年   35篇
  2012年   25篇
  2011年   33篇
  2010年   16篇
  2009年   33篇
  2008年   41篇
  2007年   43篇
  2006年   47篇
  2005年   44篇
  2004年   19篇
  2003年   27篇
  2002年   34篇
  2001年   30篇
  2000年   26篇
  1999年   17篇
  1998年   19篇
  1997年   6篇
  1996年   10篇
  1995年   18篇
  1994年   16篇
  1993年   17篇
  1992年   20篇
  1991年   11篇
  1990年   6篇
  1989年   21篇
  1988年   8篇
  1987年   6篇
  1986年   8篇
  1985年   14篇
  1984年   10篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1977年   1篇
排序方式: 共有822条查询结果,搜索用时 593 毫秒
1.
Three species of blackflies were found in emergence-trap samples taken overa period of 8 months from a second-order, forested, cold-stenothermal stream in southern Ontario. The emergence phenologies of the two common species, Prosimulium mixtum and Stegopterna mutata, are described and compared with their phenologies in other streams in North America. Hypotheses are presented for the poor faunal diversity and prolonged emergence of the two species in the stream studied. Emergence data are used to describe the pupal distribution in the stream.Wing-length measurements showed a distinct dimorphism in P. mixtum: females were larger than males. Adult size (except of P. mixtum females) varied among sampling sites in the stream and, in the case of S. mutata, this variation was time dependent.  相似文献   
2.
3.
Aim Data and analyses of elevational gradients in diversity have been central to the development and evaluation of a range of general theories of biodiversity. Elevational diversity patterns have, however, been severely understudied for microbes, which often represent decomposer subsystems. Consequently, generalities in the patterns of elevational diversity across different trophic levels remain poorly understood. Our aim was to examine elevational gradients in the diversity of macroinvertebrates, diatoms and bacteria along a stony stream that covered a large elevational gradient. Location Laojun Mountain, Yunnan province, China. Methods The sampling scheme included 26 sites spaced at elevational intervals of 89 m from 1820 to 4050 m elevation along a stony stream. Macroinvertebrate and diatom richness were determined based on the morphology of the specimens. Taxonomic richness for bacteria was quantified using a molecular fingerprinting method. Over 50 environmental variables were measured at each site to quantify environmental variables that could correlate with the patterns of diversity. We used eigenvector‐based spatial filters with multiple regressions to account for spatial autocorrelation. Results The bacterial richness followed an unexpected monotonic increase with elevation. Diatoms decreased monotonically, and macroinvertebrate richness showed a clear unimodal pattern with elevation. The unimodal richness pattern for macroinvertebrates was best explained by the mid‐domain effect (r2 = 0.72). The diatom richness was best explained by the variation in nutrient supply, and the increase in bacterial richness with elevation may be related to an increased carbon supply. Main conclusions We found contrasting patterns in elevational diversity among the three studied multi‐trophic groups comprising unicellular and multicellular aquatic taxa. We also found that there may be fundamental differences in the mechanisms underlying these species diversity patterns.  相似文献   
4.
5.
6.
Summer habitat use by sympatric Arctic charr Salvelinus alpinus, young Atlantic salmon Salmo salar and brown trout Salmo trutta was studied by two methods, direct underwater observation and electrofishing, across a range of habitats in two sub-arctic rivers. More Arctic charr and fewer Atlantic salmon parr were observed by electrofishing in comparison to direct underwater observation, perhaps suggesting a more cryptic behaviour by Arctic charr. The three species segregated in habitat use. Arctic charr, as found by direct underwater observation, most frequently used slow (mean ±s .d . water velocity 7·2 ± 16·6 cm s−1) or often stillwater and deep habitats (mean ±s .d . depth 170·1 ± 72·1 cm). The most frequently used mesohabitat type was a pool. Young Atlantic salmon favoured the faster flowing areas (mean ±s .d . water velocity 44·0 ± 16·8 cm s−1 and depth 57·1 ± 19·0 cm), while brown trout occupied intermediate habitats (mean ±s .d . water velocity 33·1 ± 18·6 cm s−1 and depth 50·2 ± 18·0 cm). Niche overlap was considerable. The Arctic charr observed were on average larger (total length) than Atlantic salmon and brown trout (mean ±s .d . 21·9 ± 8·0, 10·2 ± 3·1 and 13·4 ± 4·5 cm). Similar habitat segregation between Atlantic salmon and brown trout was found by electrofishing, but more fishes were observed in shallower habitats. Electrofishing suggested that Arctic charr occupied habitats similar to brown trout. These results, however, are biased because electrofishing was inefficient in the slow-deep habitat favoured by Arctic charr. Habitat use changed between day and night in a similar way for all three species. At night, fishes held positions closer to the bottom than in the day and were more often observed in shallower stream areas mostly with lower water velocities and finer substrata. The observed habitat segregation is probably the result of interference competition, but the influence of innate selective differences needs more study.  相似文献   
7.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   
8.
The response of Potamogeton crispus L. breakdown to controlled doses of different levels of chlorine and chlorine + ammonia was investigated over two years in outdoor experimental streams. In 1985, downstream riffles of 2 streams were dosed (observed in-stream concentrations) at ca. 10 μg/L Total Residual Chlorine (TRC), one stream at 64 μg/L TRC and one stream at 230 μg/L TRC. Two control streams were not dosed and the upstream riffles of each stream served as within stream controls. In 1986, the downstream riffle of one stream was dosed at 70 μg/L TRC and a second stream was dosed at 200 μg/L TRC. Four streams were also dosed with 2.5 mg/L NH3-N: one stream with no chlorine, one stream with ca. 10 μg/L TRC, one with 56 μg/L TRC, and one with 150 μg/L TRC. A seventh stream was dosed for 2 h at 2000 μg/L TRC and 2.5 mg/L ammonia and then allowed to recover (recovery stream). Each year, litter decomposition (degree day k values) was measured during two 35 day trials (Jun–Jul and Aug–Sep). In 1985, when streams were dosed with chlorine alone, decomposition was significantly reduced with the high (230 μg/L TRC) chlorine dose. Downstream decomposition was 27% (Jun–Jul) and 59% (Aug–Sep) of the upstream (control) rate. No other chlorine effects were found during this period. In Jun–Jul 1986, there was significantly lower decomposition in the downstream dosed sites of the 200 μg/L TRC alone stream, the 146 μg/L TRC + ammonia stream and the recovery stream; downstream decay rates were (respectively) 56%, 42% and 64% of the upstream control sites. No other up-down pairs were different in July 1986. In Aug–Sep, all three streams with chlorine + ammonia (6, 56 and 146 μg/L TRC + 2,5 mg/L ammonia) and the 70 μg/L TRC alone stream had significantly lower decomposition rates in the downstream dosed sites. For these streams, downstream decay rates ranged from 46% (high chlorine + ammonia) to 73% (low chlorine + ammonia) of the upstream control rates. No other up-down pairs were different during this trial. Up and downstream sites of the stream dosed with 2.5 mg/L ammonia alone were nearly identical for both trials (< 3% difference). These results indicate that TRC at less than 250 μg/L can significantly reduce litter decomposition and strongly suggest that addition of ammonia to chlorinated water can increase the toxic effect of chlorine. currently at the Department of Fisheries and Wildlife currently at the Department of Fisheries and Wildlife  相似文献   
9.
Macroinvertebrates were collected from riffles at 104 sites in upland Wales during April and July 1984. Species assemblages were ordinated by DECORANA, classified by TWINSPAN and related to stream chemistry and other environmental factors using correlation and multiple discriminant analysis. DECORANA axis 1 was most strongly correlated with pH and aluminium concentration whilst axis 2 correlated with stream gradient and flow. Four TWINSPAN site groups established in each season were also principally related to pH and aluminium concentration, and reflected overall taxon-richness; differences between groups were most apparent during spring, when catchment forest cover and taxon-richness were also related. A dichotomous key based on indicator species was established for each season with the coleopteran Hydraena gracilis Germar and the Ephemeroptera, including Baetis rhodani Pictet, important indicators at Level 1. We propose that these indicator systems may be used for the rapid detection and assessment of acid waters throughout Wales, and that the methodology is applicable generally.  相似文献   
10.
Fish size and habitat depth relationships in headwater streams   总被引:5,自引:0,他引:5  
Summary Surveys of 262 pools in 3 small streams in eastern Tennessee demonstrated a strong positive relationship between pool depth and the size of the largest fish within a pool (P<0.001). Similarly, the largest colonizers of newly-created deep pools were larger than the colonizers of shallow pools. We explored the role of predation risk in contributing to the bigger fish — deeper habitat pattern, which has been noted by others, by conducting five manipulative field experiments in two streams. Three experiments used stoneroller minnows (Campostoma anomalum); one used creek chubs (Semotilus atromaculatus); and one used striped shiners (Notropis chrysocephalus). The stoneroller experiments showed that survival of fish approximately 100 mm in total length (TL) was much lower in shallow pools (10 cm deep) than in deep (40 cm maximum) pools (19% versus 80% survival over 12 d in one experiment) and added cover markedly increased stoneroller survival in shallow pools (from 49% to 96% in an 11-d experiment). The creek chub experiment showed that, as for stonerollers, pool depth markedly influenced survival: the chubs survived an average of 4.9 d in shallow pools and >10.8 d in deep pools. In the striped shiner experiment in shallow artificial streamside troughs, no individuals 75–100 mm TL survived as long as 13 d, where-as smaller (20–25 mm) fish had 100% survival over 13 d. The results of the experiments show that predation risk from wading/diving animals (e.g., herons and raccoons) is much higher for larger fishes in shallow water than for these fishes in deeper water or for smaller fish in shallow water. We discuss the role of predation risk from two sources (piscivorous fish, which are more effective in deeper habitats, and diving/wading predators, which are more effective in shallow habitats) in contributing to the bigger fish — deeper habitat pattern in streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号