首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  国内免费   2篇
  2022年   1篇
  2019年   3篇
  2014年   2篇
  2011年   2篇
  2009年   2篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1983年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
Measurement of light within thin plant tissues with fiber optic microprobes   总被引:1,自引:0,他引:1  
Vogelmann, T. C., Knapp, A. K., McClean, T. M. and Smith, W. K. 1988. Measurement of light within thin plant tissues with fiber optic microprobes. - Physiol. Plant. 72: 623–630.
The measurement of light with fiber optic microprobes has been extended to thin (200–300 μm) plant tissue samples. To test the method, light measurements were made in thin aqueous films and paradermal sections from 10-day-old etiolated Cucurbita pepo L. cv. Fordhook cotyledons. The measurements obtained were highly reproducible. Paradermal sections of spongy mesophyll that were irradiated with collimated light scattered light more effectively than the palisade layer of intact cotyledons. These results demonstrate that different plant tissues have different light scattering characteristics. The successful extension of the fiber optic microprobe technique to thin systems makes it possible to examine the optical properties of different cell layers within leaves and other plant organs.  相似文献   
2.
Abstract. The distribution of chlorophyll fluorescence was measured within leaves of Medicago saliva with a fibre optic microprobe. Leaves were irradiated with broad band blue light (1000 μmol m−2s−1) and chlorophyll fluorescence was measured at 688 nm. The amount of fluorescence measured within the leaf depended upon the direction in which the probe was inserted. When the probe was advanced directly through the leaf from the shaded towards the irradiated surface, the maximum amount of detected fluorescence occurred near the boundary between the palisade and spongy mesophyll. When the probe was advanced through the leaf from the opposite direction maximum detected fluorescence was at the boundary between the epidermis and palisade. These results appear to be a consequence of the blue light gradient, which declined exponentially within the palisade but was counterbalanced by increasing chlorophyll content within the leaf. Modelling indicates that the measured distribution of chlorophyll fluorescence can be explained by relatively uniform emission of fluorescence throughout the palisade layer, indicating that the chloroplasts may be photosynthetically specialized to their light environment within the leaf.  相似文献   
3.
Two groups of wild (lakedwelling and anadromous), and a group of hatchery-reared Oncorhynchus mykiss (Walbaum) (rainbow trout) were sampled in order to measure cardiac morphometrics, haemoglobin concentration, and the DNA and protein concentration in cardiac muscle. A combination of these variables was used to distinguish wild fish from domestic ones.
The wild fish had significantly higher levels of haemoglobin (for male fish, 10.10 and 10.07 g 100 ml−1 vs. 7.69 g d−1) and larger relative ventricle mass (females, 0.091 and 0.099% ofbody mass vs. 0.073%; males, 0.108 and 0.134% vs. 0.102%; immatures, 0.086 and 0.094% vs. 0, 072%, respectively) than the domestic fish. The anadromous and domestic fish had significantly higher amounts of compact tissue when compared with lake fish (females, 43 and 47% of ventricle mass vs. 34%, respectively). Ventricle size distinguished wild fish from domestic fish, except male anadromous and male domestic fish which were distinguished only by haemoglobin and compact tissue values. Immature fishes from all groups had lower total protein levels in the ventricle, lower compact tissue levels, and less haemoglobin. Points regarding the potential environmental influences in determining these cardiovascular trends are discussed.  相似文献   
4.
We investigated the acclimation of seedlings of three tropical rain forest sub-canopy Garcinia species (G. xanthochymus, G. cowa, and G. bracteata) after transfer from 4.5 (LI) to 40 % (HI) sunlight and 12.5 (MI) sunlight to HI (LH1 and LH2 denoting transfer from LI to HI and MI to HI transfer, respectively). The changes of chlorophyll (Chl) fluorescence, net photosynthetic rate (P N), dark respiration rate (R D), Chl content per unit area (Chlarea), leaf mass per unit area (LMA), and seedling mortality were monitored over two months after transfer. These parameters together with leaf anatomy of transferred and control seedlings (kept in LI, MI, and HI) were also examined after two months. No seedlings died during the two months. Fv/Fm, P N, and Chlarea of the transferred seedlings decreased in the first 3 to 12 d. LH1 leaves showed larger reduction in Fv/Fm (>23 % vs. <16 %) and slower recovery of Fv/Fm than LH2 leaves. P N started to recover after about one week of I transfer and approached higher values in all G. cowa seedlings and G. xanthochymus LH1 seedlings than those before the transfer. However, P N of G. bracteata seedlings approached the values before transfer. The final P N values in leaves of transferred G. xanthochymus and G. cowa seedlings approached that of leaves kept in HI, while the final P N values of transferred leaves of G. bracteata were significantly lower than that of leaves grown under HI (p<0.05). R D of G. xanthochymus LH1 seedlings and all G. cowa seedlings increased and approached the value of the seedlings in HI. The final Chlarea of both G. xanthochymus and G. cowa approached the values before transfer, but that of G. bracteata did not recover to the level before transfer. The final Chlarea of all transferred seedlings was not significantly different from that of seedlings in HI except that G. cowa LH1 seedlings had higher Chlarea than that in HI. LMA decreased within 2 d and then increased continuously until about 30 d and approached the value under HI. Spongy/palisade mesophyll ratio decreased after transfer because of the increase in palisade thickness. Leaf thickness did not change, so LMA increase of transferred seedlings was mainly due to the increase of leaf density. Thus the mature leaves under LI and MI of G. xanthochymus and G. cowa are able to acclimate to HI by leaf physiological and anatomical adjustment, while G. bracteata had limited ability to acclimate to HI.  相似文献   
5.
Structural Adaptation of the Leaf Mesophyll to Shading   总被引:1,自引:0,他引:1  
Structural characteristics of the mesophyll were studied in five boreal grass species experiencing a wide range of light and water supply conditions. Quantitative indices of the palisade and spongy mesophyll tissues (cell and chloroplast sizes, the number of chloroplasts per cell, the total cell and chloroplast surface area per unit leaf surface area) were determined in leaves of each of the species. The cell surface area and the cell volume in spongy mesophyll were determined with a novel method based on stereological analysis of cell projections. An important role of spongy parenchyma in the photosynthetic apparatus was demonstrated. In leaves of the species studied, the spongy parenchyma constituted about 50% of the total volume and 40% of the total surface area of mesophyll cells. The proportion of the palisade to spongy mesophyll tissues varied with plant species and growth conditions. In a xerophyte Genista tinctoria, the total cell volume, cell abundance, and the total surface area of cells and chloroplasts were 30–40% larger in the palisade than in the spongy mesophyll. In contrast, in a shade-loving species Veronica chamaedris, the spongy mesophyll was 1.5–2 times more developed than the palisade mesophyll. In mesophyte species grown under high light conditions, the cell abundance and the total cell surface area were 10–20% greater in the palisade mesophyll than in the spongy parenchyma. In shaded habitats, these indices were similar in the palisade and spongy mesophyll or were 10–20% lower in the palisade mesophyll. In mesophytes, CO2 conductance of the spongy mesophyll accounted for about 50% of the total mesophyll conductance, as calculated from the structural characteristics, with the mesophyll CO2 conductance increasing with leaf shading.  相似文献   
6.
Ten-days-old bean plants (Phaseolus vulgaris L., cv. Cheren Starozagorski) were treated with simulated acid rain (pH 2.4, 2.2, 2.0 and 1.8). Anatomical changes in the primary leaves were studied 3, 48 and 168 h after a single treatment. This treatment induced: 1) change in the shape of palisade cells, contraction of their contact surfaces and expansion of spongy cells (pH 1.8, 3 h after treatment); 2) reduction of symplast connections among palisade cells and of apoplast in the spongy mesophyll (pH 1.8, 48 h after treatment); 3) destruction of adaxial epidermis and portions of palisade mesophyll, plasmolysis of spongy cells (pH 1.8, 168 h after treatment); 4) full destruction of mesophyll (pH 2.4, 2.2, 2.0 and 1.8, 168 h after treatment). The structure of abaxial epidermis was more stable than that of the adaxial one. With respect to anatomical parameters the studied species could be considered as comparatively resistant to acid rain.  相似文献   
7.
A focused approach that exploits a single plant species, namely, Arabidopsis thaliana, as a means to understand how leaf cells differentiate and the factors that govern overall leaf morphogenesis has begun to generate a significant body of knowledge in this model plant. Although many studies have concentrated on specific cell types and factors that control their differentiation, some degree of consensus is starting to be reached. However, an understanding of specific mechanisms by which cells differentiate in relation to their position, that appears to be an overriding factor in this process, is not yet in place for cell types in the Arabidopsis leaf. It is clear that perturbations in cellular development within the leaf do not necessarily have a general effect on morphogenesis. Environmental factors, particularly light, have been known to affect leaf cell differentiation and expansion, and endogenous hormones also appear to play an important role, through mechanisms that are beginning to be uncovered. It is likely that continued identification of genes involved in leaf development and their regulation in relation to positional information or other cues will lead to a clearer understanding of the control of differentiation and morphogenesis in the Arabidopsis leaf.  相似文献   
8.
Tobacco (Nicotiana tabacum L.) plants were cultured in vitro photoautotrophically at three levels of irradiance (PAR 400–700 nm): low (LI, 60 μmol m−2 s−1), middle (MI, 180 μmol m−2 s−1) and high (HI, 270 μmol m−2 s−1). Anatomy of the fourth leaf from bottom was followed during leaf development. In HI and MI plants, leaf area expansion started earlier as compared to LI plants, and both HI and MI plants developed some adaptations of sun species: leaves were thicker with higher proportion of palisade parenchyma to spongy parenchyma tissue. Furthermore, in HI and MI plants palisade and spongy parenchyma cells were larger and relative abundance of chloroplasts in parenchyma cells measured as chloroplasts cross-sectional area in the cell was lower than in LI plants. During leaf growth, chloroplasts crosssectional area in both palisade and spongy parenchyma cells in all treatments considerably decreased and finally it occupied only about 5 to 8 % of the cell cross-sectional area. Thus, leaf anatomy of photoautotrophically in vitro cultured plants showed a similar response to growth irradiance as in vivo grown plants, however, the formation of chloroplasts and therefore of photosynthetic apparatus was strongly impaired.  相似文献   
9.
The ultrastructure of chloroplasts in the primary leaf of 10-d-old bean plants (Phaseolus vulgaris L., cv. Cheren Starozagorski) was studied 3, 5, 24, 48, 72 and 168 h after a single treatment with simulated acid rain (pH 2.4, 2.2, 2.0 and 1.8). Different changes in chloroplast structure till full destruction of organelles were traced. A determining factor for these changes was the histological localization of chloroplasts. In the chloroplasts of palisade parenchyma different degrees of expansion of thylakoids (3, 5, and 24 h after the single treatment), and conformational changes of the inner membrane system (48, 72 and 168 h) were observed. The chloroplasts of spongy parenchyma showed a significantly higher degree of structure resistance. The expansion of thylakoids was weak and did not depend on the duration of treatment. The ultrastructural changes of chloroplasts confirmed relative resistance of this species till pH 2.0.  相似文献   
10.
Specific probes such as targeted-enzyme assays have failed to reveal qualitative differences between the metabolism of spongy parenchyma and that of palisade parenchyma cells. To determine whether the results from these definite assays support a general conclusion concerning the overall biochemical similarity of these cells, two-dimensional protein profiles have been constructed for these two types of cells. Protein extracts were prepared from freeze-dried homogeneous tissue samples or from isolated protoplasts of Vicia faba L. cv. Longpod leaves. Proteins separated by micro two-dimensional gel electrophoresis were stained with silver. The relative apparent abundance (based on visual judgment of the area and intensity of staining) was estimated for each spot. Pairwise comparison of nominally 125 stained proteins of each of approximately 75 gel pairs did not reveal a consistent qualitative difference between the profiles. Recognizing that polypeptides escaped detection in our investigation through loss, failure to stain sufficiently, or incomplete resolution, we qualify our conclusion that spongy parenchyma and palisade are similar in their overall protein complement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号