首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   4篇
  国内免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   6篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1978年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
1.
During the night anchovies were observed in the deep offshore oceanic and intermediate slope zones off the Baja California coast, Mexico, in high abundance. Anchovies moved towards the shallow inshore neritic zone in low density groups, returning at dawn to deeper depth strata. During the day, abundances were reduced drastically and those observed were forming compact and discrete schools at deeper depth strata. Anchovy and euphausiid abundance, as recorded by the echosounder, Were positively correlated.  相似文献   
2.

The factor of most importance to the structure of epipelagic oceanic communities is the absence of cover and the inability to hide from predators in surface waters during the day (Elton, 1939). Visual predation in an environment devoid of cover has resulted in convergent evolution into only six modal adaptive patterns. Large, fast, visual predators roam the water, 1) alone or in 2) schools, and they eat anything of appropriate size that they see. Prey escape only by dint of 3) very small size, 4) invisibility due to tissue transparency, 5) diurnal vertical migration, or by 6) exploitation of the sea surface. The sensory ecology and physiology of zooplankton are different from that of all other animal categories in all other habitats. Epipelagic zooplankton are either extremely small animals, with small and structurally simple sense organs, or they are large, with gelatinous, transparent bodies which often lack sense organs.  相似文献   
3.
The response of age 0+ year juvenile Atlantic cod Gadus morhua to the presence of age 1+ and age 3+ year conspecifics was measured with and without cover available. Juveniles reacted by aggregating more closely and maintaining distance from older conspecifics in an experimental setting without cover but only to age 3+ year conspecifics when cover was available. The results indicate that prior residence of older juveniles can affect age 0+ year juveniles during benthic settlement and highlights the conservation value of structurally complex nursery habitats.  相似文献   
4.
在自然界中,环境变化、季节更替和人为因素造成食物资源时空分布的不均一性,导致鱼类经常面临食物资源短缺的环境胁迫,对其能量代谢和行为造成一定影响。为考察食物资源短缺下暖水性鲤科鱼类能量代谢、个性与集群行为的应对策略及其可能的内在关联,选取中华倒刺鲃(Spinibarbus sinensis)幼鱼为实验对象,分别测定饥饿组(2周)和对照组(维持日粮)在处理前后实验鱼的标准代谢率(Standard metabolic rate,SMR)、个性行为(勇敢性、探索性和活跃性)以及实验处理后的集群行为(凝聚力和协调性)。研究发现:(1)饥饿组和对照组实验过程中实验鱼SMR均显著下降,但仅饥饿组实验鱼SMR具有重复性;(2)饥饿导致中华倒刺鲃幼鱼勇敢性、探索性、活跃性均显著增加;(3)饥饿导致群体成员间距离缩短,游泳速度及其同步性上升。研究表明:饥饿后的中华倒刺鲃不仅适应性降低SMR以减少能量消耗,而且呈现出更高的勇敢性、探索性和活跃性以利于获取食物资源;饥饿迫使中华倒刺鲃群体提高凝聚力和协调性,可能有助于提高群体的生存能力。  相似文献   
5.
6.
Recent anthropogenic increases in algal turbidity in aquatic habitats have been suggested to affect the ability of fish to assess predation risk. We investigated the response of feeding three‐spined sticklebacks (Gasterosteus aculeatus) exposed to a sudden appearance of an avian predator (the silhouette of common tern, Sterna hirundo), under clear and turbid water conditions. As stickleback use social cues to aid in predator avoidance, we also tested whether turbidity affected social information use by manipulating group size. We found that in turbid water, a smaller proportion of fish would escape from the feeding area, that the distance escaped was shorter and that a smaller proportion of fish fled into shelter. Larger group size was associated with longer escape distance and greater shelter use. However, there was no effect of group size on the proportion of fish that escaped the arena. The effect of group size was similar for turbid and clear water. Our finding that the fish showed a weaker antipredator response suggests that turbidity impedes their risk assessment capability. However, the sticklebacks were still able to benefit of the social facilitation provided by being in a group. This suggests that algal turbidity has detrimental effects on the ability of sticklebacks to assess predation risk from avian predators in shallow water. An implication is that in shallow water fish may be more vulnerable to avian predation under turbid conditions.  相似文献   
7.
Bluegills, Lepomis macrochirus, form schools and use shade to avoid predators. How light intensity, predators, and experience might affect antipredator behavior of bluegill are not well understood. Hence, we evaluated use of shade and schooling by naive (hatchery) and experienced (wild) bluegills (50–60 mm total length) at four light levels (1.5, 85, 169, 340 lux) in the presence and absence of a model predator in experimental pools. Naive bluegills used shade extensively at all light levels, even when the predator was in the shade. They rarely schooled, preferring to shoal in the shade. Experienced bluegill used shade when the predator was in the open and avoided shade when the predator was there. Schooling was more prevalent at low light levels when shade was less intense. Use of shade became an increasingly important behavior at higher light levels, unless the predator was in the shade. A shaded predator caused experienced bluegills to shoal tightly in the opposite, open area. These data suggest naive bluegills may not have considered the model predator a threat. Their behavior suggests avian predator avoidance, a possibility given that avian predators were present at the hatchery. Experienced bluegill employed behaviors that would be useful in avoiding piscine predators.  相似文献   
8.
We present the first in situ observations of the pelagic larvae of coral-reef fishes feeding, schooling and being preyed upon. In addition, we report on their behavioural interactions with adult and juvenile fishes. Observations on over 500 larvae of over 50 species (mostly from four families) near the end of their pelagic interval were made in both open water (> 1 km offshore) and near-reef environments. Nearly 10% of larvae were seen to feed in open water, but < 1% fed near the reef. Presettlement schooling was observed in five species of four families. We observed no predation upon larvae in open water except near the bottom. Near the reef, 8.5% of larvae were eaten. The main predators near and on the reef were a species of wrasse and lizardfishes. Rates of predation seem to differ among genera of pomacentrids, perhaps related to differences in behaviour when settling. When confronted with adult fishes, which happened largely near the reef, larvae reacted with a limited range of behaviours, including sheltering near the observer, swimming to the surface, slowing or stopping, or swimming offshore. The frequency of these behaviours differed among larvae of three pomacentrid genera. Interactions with reef residents, particularly pomacentrids, were common, and usually involved aggression by the resident toward settling larvae. This may act to discourage settlement during the day when such residents are active. These data show that behaviour of late larvae of coral-reef fishes is complex and can greatly influence survival and recruitment. Further, behaviour differs among taxa, showing that not only are larvae not passive, but also that a generalised behaviour of larvae does not exist.  相似文献   
9.
Dispersal and migration are superficially similar large‐scale movements, but which appear to differ in terms of inter‐individual behavioural synchronization. Seasonal migration is a striking example of coordinated behaviour, enabling animal populations to track spatio‐temporal variation in ecological conditions. By contrast, for dispersal, while social context may influence an individual's emigration and settlement decisions, transience is believed to be mostly a solitary behaviour. Here, we review differences in drivers that may explain why migration appears to be more synchronized than dispersal. We derive the prediction that the contrast in the importance of behavioural synchronization between dispersal and migration is linked to differences in the selection pressures that drive their respective evolution. Although documented examples of collective dispersal are rare, this behaviour may be more common than currently believed, with important consequences for eco‐evolutionary dynamics. Crucially, to date, there is little available theory for predicting when we should expect collective dispersal to evolve, and we also lack empirical data to test predictions across species. By reviewing the state of the art in research on migration and collective movements, we identify how we can harness these advances, both in terms of theory and data collection, to broaden our understanding of synchronized dispersal and its importance in the context of global change.  相似文献   
10.
Fish serve as hosts to a range of parasites that are taxonomically diverse and that exhibit a wide variety of life cycle strategies. Whereas many of these parasites are passed directly between ultimate hosts, others need to navigate through a series of intermediate hosts before reaching a host in (or on) which they can attain sexual maturity. The realisation that parasites need not have evolved to minimise their impact on hosts to be successful, and in many cases may even have a requirement for their hosts to be eaten by specific predators to ensure transmission, has renewed interest in the evolutionary basis of infection-associated host behaviour. Fishes have proved popular models for the experimental examination of such hypotheses, and parasitic infections have been demonstrated to have consequences for almost every aspect of fish behaviour. Despite a scarcity of knowledge regarding the mechanistic basis of such behaviour changes in most cases, and an even lower understanding of their ecological consequences, there can be little doubt that infection-associated behaviour changes have the potential to impact severely on the ecology of infected fishes. Changes in foraging efficiency, time budget, habitat selection, competitive ability, predator-prey relationships, swimming performance and sexual behaviour and mate choice have all been associated with – and in some cases been shown to be a result of – parasite infections, and are reviewed here in some detail. Since the behavioural consequences of infections are exposed to evolutionary selection pressures in the same way as are other phenotypic traits, few behavioural changes will be evolutionarily neutral and host behaviour changes that facilitate transmission should be expected. Despite this expectation, we have found little conclusive evidence for the Parasite Increased Trophic Transmission (PITT) hypothesis in fishes, though recent studies suggest it is likely to be an important mechanism. Additionally, since the fitness consequences of the many behavioural changes described have rarely been quantified, their evolutionary and ecological significance is effectively unknown.Potential hosts may also change their behaviour in the presence of infective parasite stages, if they adopt tactics to reduce exposure risk. Such `behavioural resistance', which may take the form of habitat avoidance, prey selectivity or avoidance of infected individuals, can be viewed as behavioural change associated with the threat of being parasitised, and so is included here. Actually harbouring infections may also stimulate fishes to perform certain types of simple or complex behaviours aimed at removing parasites, such as substrate scraping or the visitation of cleaning stations, although the efficacy of the latter as a parasite removal strategy is currently subject to a good deal of debate.The effects parasites have on shoaling behaviour of host fish have attracted a good deal of attention from researchers, and we have provided a case study to summarise the current state of knowledge. Parasites have been shown to affect most of the antipredator effects of shoaling (such as vigilance, co-ordinated evasion and predator confusion) and can also impair an individual's foraging ability. It therefore seems unsurprising that, in a number of species avoidance of parasitised individuals has evolved which may explain the occurrence of parasite-assorted shoals in the field. Parasitised fish are found more often in peripheral shoal positions and show a reduced tendency for shoaling in some fish species. Given the array of host behaviours that may be changed, the fitness consequences of shoal membership for parasitised hosts and their parasites are not always easy to predict, yet an understanding of these is important before we can make predictions regarding the ecological impact of infections on host fish populations.Clearly, there remain many gaps in our knowledge regarding the effects of parasites on the behaviour of host fish. We believe that a much greater understanding of the importance of infection-associated behaviour changes in fish could be gained from high quality research in comparatively few areas. We have completed our review by highlighting the key research topics that we believe should attract new research in this field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号