首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   20篇
  国内免费   36篇
  339篇
  2024年   2篇
  2023年   12篇
  2022年   20篇
  2021年   18篇
  2020年   13篇
  2019年   18篇
  2018年   17篇
  2017年   18篇
  2016年   16篇
  2015年   22篇
  2014年   26篇
  2013年   22篇
  2012年   14篇
  2011年   22篇
  2010年   12篇
  2009年   17篇
  2008年   12篇
  2007年   12篇
  2006年   6篇
  2005年   7篇
  2004年   6篇
  2003年   10篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1994年   1篇
  1982年   2篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
1.
Lifibrol, a new drug for the treatment of hypercholesterolemia, contains a stereogenic center bearing a secondary alcohol group. A normal-phase achiral–chiral HPLC separation of the enantiomers of lifibrol and two of its metabolites was developed and validated for quantitation in dog plasma. A silica and a Chiralcel OD-H column were operated in series and all six enantiomeric components and internal standard were directly separated. An initial solid-phase extraction (phenyl) clean-up step and a column-switching step to eliminate late-eluting compounds were also utilized. The solid-phase extraction step was automated using a robotic system. Assay development, validation, and application of the method to a bioavailability study of the racemate and enantiomers of lifibrol in dogs are described. The lower limit of quantitation was 0.0125 μg/ml for each enantiomer of lifibrol using 200 μl of dog plasma with UV detection (255 nm). In dog plasma following oral or intravenous administration of the racemate, the (R)/(S) ratio of the enantiomers of lifibrol was greater than one and increased with time. Following administration of the individual enantiomers, chiral inversion of the (S)-enantiomer but not the (R)-enantiomer was observed. © 1994 Wiley-Liss, Inc.  相似文献   
2.
3-Hydroxypropionic acid (3-HP) is a platform molecule whose biological production was carried out by the bacterium Limosilactobacillus reuteri according to a two-step process: first, a growth phase in batch mode on glucose, then a glycerol bioconversion into 3-HP in fed-batch mode. With the objective of improving 3-HP bioproduction, this study aimed at defining the operating conditions during the bioconversion phase that increases the bioproduction performance. A central composite rotatable design allowed testing various pH levels and specific glycerol feeding rates. By establishing response surfaces, optimal conditions have been identified that were different depending on the considered output variable (final 3-HP quantity, 3-HP production yield and production rate). Of them, 3-HP final quantity and 3-HP production yield were maximized at pH 6.0 and at specific glycerol feeding rates of 60 and 55 mggly gCDW−1 h−1, respectively. The specific 3-HP production rate was the highest at the upper limit of the specific substrate feeding rate (80 mggly gCDW−1 h−1) but was not affected by the pH. An additional experiment was carried out at pH 6.0 and a specific glycerol feeding rate of 80 mggly gCDW−1 h−1 to validate the previous observations. In conclusion, the results showed a significant improvement of 3-HP concentration by 13%, of specific production rate by 34% and of 3-HP volumetric productivity by 39%, as compared to the initial values.  相似文献   
3.
5-Hydroxymethylfurfural (HMF) is a versatile platform chemical for a fossil free, bio-based chemical industry. HMF can be produced by using fructose as a feedstock. Using edible, first-generation biomass to produce chemicals has been questioned in terms of potential competition with food supply. Second-generation biomass like miscanthus could be an alternative. However, there is a lack of information if second-generation lignocellulosic biomass is a more sustainable feedstock to produce HMF. Therefore, a life cycle assessment was performed in this study to determine the environmental impacts of HMF production from miscanthus and to compare it with HMF from high-fructose corn syrup (HFCS). HFCS from either Hungary or Baden-Württemberg (Germany) was considered. Compared to the HFCS biorefineries the miscanthus concept is producing less emissions in all impact categories studied, except land occupation. Overall, the production and usage of second-generation biomass could be especially beneficial in areas where the use of N fertilizers is restricted. Besides, conclusions for the further development of the on-farm biorefinery concept were elaborated. For this purpose, process simulations from a previous study were used. Results of the previous study in terms of TEA and the current LCA study in terms of environmental sustainability indicate that the lignin depolymerization unit in the miscanthus biorefinery has to be improved. The scenario without lignin depolymerization performs better in all impact categories. The authors recommend to not further convert the lignin to products like phenol and other aromatic compounds. The results of the contribution analyses show that the major impact in the HMF production is caused by the auxiliary materials in the separation units and the required heat. Further technical development should focus on efficient heat as well as solvent use and solvent recovery. At this point further optimizations will lead to reduced emissions and costs at the same time.  相似文献   
4.
In the Maritime Alps, the Middle and Upper Bathoniancorresponds to a transgressive episode on the Provençal platform. The advancement of the marine invasion is very noticeable between Grasse and Antibes. The sediment shows the existence of a shallow marine environment in which benthic organisms were predominant.The deposits are at first varied: marly layers withbivalves (burrowers for the most part) and calcareous layers with monospecific populations of brachiopods (Burmirhynchia mediterranea nov. sp. in a calm environment, and B. turgidaBuckman in a more turbulent environment).The deposits then become uniform and show theexistence of very shallows environments: B. decorata kiliani nov. subsp. is the only representative of macrofauna in the micritic limestones that can be attributed to the Upper Bathonian.The Rhynchonellids, as on the other Bathonian carbonateplatforms of Western Europe, seem to be the only organisms likely to stay alive and proliferate in the specific environments in which entirely carbonate sediments are deposited in shallow water. Due to their relationships to those existing in other platforms, the species described in this article permit the clarification of biostratigraphic correlations.  相似文献   
5.
BackgroundsDiverse marine habitats along Jeddah's Red Sea coast support rich biodiversity. Few studies have been done on its diverse communities, especially its microbial counterparts. Metagenomic analysis of marine benthic micro-eukaryotic communities was performed for the first time on the Red Sea coast of Jeddah. This research looks into their community structure and metabolic potential.MethodsNext-generation sequencing was used to examine the micro-eukaryotic communities of seven sedimentary soil samples from four Jeddah coast locations. After isolating DNA from seven benthic sedimentary soil samples, the 18S rDNA V4 regions were amplified and sequenced on the Illumina MiSeq. It was also verified using an Agilent Technologies 2100 Bioanalyzer with a DNA 1000 chip (Agilent Technologies, Fisher Scientific). A standard curve of fluorescence readings generated by qPCR quantification using the Illumina library was achieved using the GS FLX library. Metagenomic data analysis was used to evaluate the microbial communities' biochemical and enzymatic allocations in studied samples.ResultsBlast analysis showed that the top ten phyla were Annelida, Eukaryota, Diatomea, Porifera, Phragmoplastophyta, Arthropoda, Dinoflagellata, Xenacoelomorpha Nematoda, and uncultured. Annelida was also found in the highest percentage (93%), in the sample M followed by Porifera (64%), the most abundant in the control sample then Eukaryotes (61%), Phragmatoplastophyta (55%), Arthropoda, and Diatomea (the least common) (32%). community diversity analysis: using Shannon and inverse Simpson indices showed sediment composition to be effective. Also, PICRUST2 indicated that the most abundant pathways were pyruvate fermentation to isobutanol, pyrimidine deoxyribonucleotide phosphorylation, adenosine ribonucleotide de novo biosynthesis, guanosine ribonucleotide de novo biosynthesis, NAD salvage pathway I, the super pathway of glyoxylate bypass and aerobic respiration I (cytochrome c).ConclusionResults showed that high throughput metagenomics could reveal species diversity and estimate gene profiles. Environmental factors appear to be more important than geographic variation in determining the structure of these microbial communities. This study provides the first report of marine benthic micro-eukaryotic communities found on the Red Sea coast of Jeddah and will serve as a good platform for future research.  相似文献   
6.
7.
Marine animals are increasingly instrumented with environmental sensors that provide large volumes of oceanographic data. Here, we conduct an innovative and comprehensive global analysis to determine the potential contribution of animal‐borne instruments (ABI) into ocean observing systems (OOSs) and provide a foundation to establish future integrated ocean monitoring programmes. We analyse the current gaps of the long‐term Argo observing system (>1.5 million profiles) and assess its spatial overlap with the distribution of marine animals across eight major species groups (tuna and billfishes, sharks and rays, marine turtles, pinnipeds, cetaceans, sirenians, flying seabirds and penguins). We combine distribution ranges of 183 species and satellite tracking observations from >3,000 animals. Our analyses identify potential areas where ABI could complement OOS. Specifically, ABI have the potential to fill gaps in marginal seas, upwelling areas, the upper 10 m of the water column, shelf regions and polewards of 60° latitude. Our approach provides the global baseline required to plan the integration of ABI into global and regional OOS while integrating conservation and ocean monitoring priorities.  相似文献   
8.
Biomolecules, especially proteins and nucleic acids, have been widely studied to develop biochips for various applications in scientific fields ranging from bioelectronics to stem cell research. However, restrictions exist due to the inherent characteristics of biomolecules, such as instability and the constraint of granting the functionality to the biochip. Introduction of functional nanomaterials, recently being researched and developed, to biomolecules have been widely researched to develop the nanobiohybrid materials because such materials have the potential to enhance and extend the function of biomolecules on a biochip. The potential for applying nanobiohybrid materials is especially high in the field of bioelectronics. Research in bioelectronics is aimed at realizing electronic functions using the inherent properties of biomolecules. To achieve this, various biomolecules possessing unique properties have been combined with novel nanomaterials to develop bioelectronic devices such as highly sensitive electrochemical‐based bioelectronic sensing platforms, logic gates, and biocomputing systems. In this review, recently reported bioelectronic devices based on nanobiohybrid materials are discussed. The authors believe that this review will suggest innovative and creative directions to develop the next generation of multifunctional bioelectronic devices.  相似文献   
9.
Identification of autoantigens and the detection of autoantibody reactivity are useful in biomarker discovery and for explaining the role of important biochemical pathways in disease. Despite all of their potential advantages, the main challenge to working with autoantibodies is their sensitivity. Nevertheless, proteomics may hold the key to overcoming this limitation by providing the means to multiplex. Clearly, the ability to detect multiple autoantigens using a platform such as a high-density antigen microarray would improve sensitivity and specificity of detection for autoantibody profiling. The aims of this review are to: briefly describe the current status of antigen–autoantibody microarrays; provide examples of their use in biomarker discoveries; address current limitations; and provide examples and strategies to facilitate their implementation in the clinical setting.  相似文献   
10.
Proteomics research revealed the impressive complexity of eukaryotic proteomes in unprecedented detail. It is now a commonly accepted notion that proteins in cells mostly exist not as isolated entities but exert their biological activity in association with many other proteins, in humans ten or more, forming assembly lines in the cell for most if not all vital functions.1,2 Knowledge of the function and architecture of these multiprotein assemblies requires their provision in superior quality and sufficient quantity for detailed analysis. The paucity of many protein complexes in cells, in particular in eukaryotes, prohibits their extraction from native sources, and necessitates recombinant production. The baculovirus expression vector system (BEVS) has proven to be particularly useful for producing eukaryotic proteins, the activity of which often relies on post-translational processing that other commonly used expression systems often cannot support.3 BEVS use a recombinant baculovirus into which the gene of interest was inserted to infect insect cell cultures which in turn produce the protein of choice. MultiBac is a BEVS that has been particularly tailored for the production of eukaryotic protein complexes that contain many subunits.4 A vital prerequisite for efficient production of proteins and their complexes are robust protocols for all steps involved in an expression experiment that ideally can be implemented as standard operating procedures (SOPs) and followed also by non-specialist users with comparative ease. The MultiBac platform at the European Molecular Biology Laboratory (EMBL) uses SOPs for all steps involved in a multiprotein complex expression experiment, starting from insertion of the genes into an engineered baculoviral genome optimized for heterologous protein production properties to small-scale analysis of the protein specimens produced.5-8 The platform is installed in an open-access mode at EMBL Grenoble and has supported many scientists from academia and industry to accelerate protein complex research projects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号