首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   41篇
  国内免费   3篇
  2024年   1篇
  2023年   8篇
  2021年   3篇
  2020年   23篇
  2019年   25篇
  2018年   17篇
  2017年   13篇
  2016年   22篇
  2015年   11篇
  2014年   15篇
  2013年   24篇
  2012年   16篇
  2011年   12篇
  2010年   18篇
  2009年   19篇
  2008年   22篇
  2007年   23篇
  2006年   19篇
  2005年   22篇
  2004年   15篇
  2003年   13篇
  2002年   16篇
  2001年   16篇
  2000年   8篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有434条查询结果,搜索用时 15 毫秒
1.
Increasing nest survival by excluding predators is a goal of many bird conservation programs. However, new exclosure projects should be carefully evaluated to assess the potential risks of disturbance. We tested the effectiveness of predator exclosure fences (hereafter, fences) for nests of critically endangered Florida Grasshopper Sparrows (Ammodramus savannarum floridanus) at a dry prairie site (Three Lakes; 2015–2018) and a pasture site (the Ranch; 2015–2016) in Osceola County, Florida, USA. We installed fences at nests an average of 8 days after the start of incubation, and nest abandonment after fence installation was rare (2 of 149 installations). Predation was the leading cause of failure for unfenced nests at both sites (48–73%). At Three Lakes, nest cameras revealed that mammals and snakes were responsible for 61.5% and 38.5% of predation events, respectively, at unfenced nests. Fences reduced the daily probability of predation (0.016 for fenced nests vs. 0.074 for unfenced nests). The probability that a fenced nest would survive from discovery to fledging was more than double that of unfenced nests (60.4% vs. 27.7%). However, we found no difference in daily nest survival at the Ranch between the year before nests were fenced (2015; 0.874) and the year when all but one nest were fenced (2016; 0.867) because red imported fire ants (Solenopsis invicta) were responsible for 86% of predation events at fenced nests at the Ranch. The use of cameras at fenced nests revealed that site‐specific differences in nest predators explained variation in fence efficiency between sites. Our fence design may be useful for other species of grassland birds, but site‐specific predator communities and species‐specific response of target bird species to fences should be assessed before installing fences at other sites.  相似文献   
2.
  1. Shifts in dominance and species reordering can occur in response to global change. However, it is not clear how altered precipitation and disturbance regimes interact to affect species composition and dominance.
  2. We explored community‐level diversity and compositional similarity responses, both across and within years, to a manipulated precipitation gradient and annual clipping in a mixed‐grass prairie in Oklahoma, USA. We imposed seven precipitation treatments (five water exclusion levels [?20%, ?40%, ?60%, ?80%, and ?100%], water addition [+50%], and control [0% change in precipitation]) year‐round from 2016 to 2018 using fixed interception shelters. These treatments were crossed with annual clipping to mimic hay harvest.
  3. We found that community‐level responses were influenced by precipitation across time. For instance, plant evenness was enhanced by extreme drought treatments, while plant richness was marginally promoted under increased precipitation.
  4. Clipping promoted species gain resulting in greater richness within each experimental year. Across years, clipping effects further reduced the precipitation effects on community‐level responses (richness and evenness) at both extreme drought and added precipitation treatments.
  5. Synthesis: Our results highlight the importance of studying interactive drivers of change both within versus across time. For instance, clipping attenuated community‐level responses to a gradient in precipitation, suggesting that management could buffer community‐level responses to drought. However, precipitation effects were mild and likely to accentuate over time to produce further community change.
  相似文献   
3.
Abstract Grassland birds have declined more than any other North American habitat-associated bird community. Because most species of grassland birds evolved within heterogeneous landscapes created by the interaction of fire and grazing, traditional rangeland management that promotes homogeneity, including annual dormant-season burning combined with early-intensive grazing, might be partly responsible for these declines, especially in some regions of the Great Plains, USA. Recently, an alternative grassland management practice known as patch-burning has been promoted as a means of restoring heterogeneity to grasslands by mimicking the grazing-fire interaction that once occurred on the prairie before European settlement. From 2003 to 2004, we examined effects of patch-burning and traditional management (annual burning followed by early-intensive grazing) on the reproductive success of dickcissels (Spiza americana) in tallgrass prairie in Oklahoma. We monitored 296 dickcissel nests and found that dickcissel nesting phenology differed between traditional and patch-burned pastures. Specifically, dickcissels tended to initiate their nests later in the traditional pasture. Mean number of eggs laid and fledglings produced were similar between the treatments, but nest densities were higher in traditional pastures. Predation was the predominant cause of nest failure and was higher in traditional pastures than in patch-burned pastures. Brown-headed cowbird (Molothrus ater) parasitism was higher in traditional pastures than in patch-burned pastures. Overall, dickcissel nest success was higher in patch-burned pastures than in traditional pastures. The positive response of dickcissel nest success to patch-burn management provides further evidence that this practice can be a useful tool for grassland bird conservation. By creating a mosaic of different stature vegetation, patch-burn management enhances productivity of grassland bird species by providing a refuge area in the unburned patches that affords dickcissels and other nesting grassland birds some protection from the direct (e.g., trampling) and indirect (e.g., cowbird parasitism and predation) effects of grazing, which are not available under traditional management. Patch-burn management should be encouraged as a conservation strategy for grassland birds throughout the Great Plains.  相似文献   
4.
MYCORRHIZAS IN GRASSLANDS: INTERACTIONS OF UNGULATES, FUNGI AND DROUGHT   总被引:1,自引:0,他引:1  
  相似文献   
5.
Restoration and creation of freshwater wetlands using seed banks   总被引:12,自引:0,他引:12  
The minimum information about a seed bank needed for a wetland restoration or creation project is a species list. There are two basic techniques for determining the composition of seed banks: (1) mechanical separation of seeds from a volume of soil and (2) germination of seeds from a volume of soil under appropriate environmental conditions. The latter method always gives biased results. It is best to collect as many random samples as possible when sampling a wetland seed bank. These can be combined as needed for processing. Field studies in India have demonstrated that vestigial seed banks can be used to re-establish a former vegetation type in a monsoonal wet-land that had become overgrown by a species of grass. In less than a year, 9 of 1 I species in the vestigial seed bank were found growing in areas cleared of the grass. Vestigial seed banks of drained prairie wetlands in the northcentral United States contained a few wetland species after 70 years, although species diversity and seed density declined significantly after 20 to 30 years of drainage and cultivation. In Florida, U.S.A., wetlands have been established in strip-mined areas using donor soils from existing wetlands. Newly established wetlands quickly developed a dense cover of vegetation, although this vegetation often lacked many desirable wetland species. Experimental studies of soil moisture conditions using a seed bank from the Delta Marsh, Canada, demonstrated that soil moisture affected both the total number of seeds, and the relative proportion of seeds of each species that germinated from a seed bank. The density of seedlings of emergent wetland species in the treatments was directly proportional to soil moisture, while that of terrestrial annuals was inversely proportional. Emergent species made up nearly 90% of the seedlings in the wettest treatment and 0% in the driest.From a paper presented at the Third International Wetlands Conference, 19–23 September, 1988, University of Rennes, France.  相似文献   
6.
Native unploughed tallgrass prairie from Konza Prairie, Kansas, USA is described with respect to plant species compositional changes over a five year period in response to fire and topography. The principal gradient of variation in the vegetation is related to time since burning. Species show an individualistic response in terms of relative abundance to this gradient. Both the percentage of and cover of C4 species and all grasses decrease as the prairie remains unburnt. Forb and woody plant species numbers and abundance increase along this gradient. A secondary gradient of variation reflects topography (i.e. upland versus lowland soils). Upland soils support a higher species richness and diversity. Upland and lowland plant assemblages are distinct except on annually burnt prairie. The interaction between burning regime, topography and year-to-year climatic variation affects the relative abundance of the plant species differentially. The most dominant species overall, Andropogon gerardii, was affected only by year-to-year variation (i.e. climate). Its position at the top of the species abundance hierarchy was unaffected by burning regime or soil type. The other dominant species showed a suite of varying responses to these factors.Deceased May, 1986.  相似文献   
7.
An ecomorphological analysis of the tallgrass prairie of central North America divided representative species of the native grassland flora into eight guilds or groups of species with similar life-form, phenology, and ecology. The guilds, segregated by multivariate analysis, are: (1) warm-season graminoids with Kranz anatomy and the Hatch-Slack photosynthetic pathway (C4 grasses); (2) cool-season graminoids without Kranz anatomy, but with the common Calvin or C3 photosynthetic pathway (C3 grasses and sedges); (3) annuals and biennial forbs; (4) ephemeral spring forbs; (5) spring forbs; (6) summer/fall forbs; (7) legumes; and (8) woody shrubs. The study was based on 158 plant species indigenous to three upland prairie sites in northeastern Kansas. Each species was scored for 32 traits which fall into five broad categories: plant habit, leaf characteristics, stem structures, root structures, and reproductive traits, including phenology. A multivariate, detrended correspondence analysis sorted the 158 species into the eight principal groups or guilds. These groups were further supported by a cluster analysis and discriminant function analysis of the same data set. The discriminant function analysis determined that 94.3% of the species were correctly classified in their respective guilds, and that the guilds were statistically different. Results indicate that guild analysis offers a basis for detailed classification of grassland vegetation that is more ecologically focused than species composition, as the myriad of species (about 1,000 prairie species on the central plains of North America) vary in presence, cover, and importance with their individualistic distribution.Abbreviations C3= C3 photosynthesis - C4= C4 photosynthesis - LSD= least significant difference  相似文献   
8.
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO2 may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO2, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO2 levels over a 2-year period. Native tallgrass prairie plots (4.5 m diameter) were exposed continuously (24 h) to ambient and twice-ambient CO2 from 1 April to 26 October. We compared our results to an unfertilized companion experiment on the same research site. Above- and belowground biomass production and leaf area of fertilized plots were greater with elevated than ambient CO2 in both years. The increase in biomass at high CO2 occurred mainly aboveground in 1991, a dry year, and belowground in 1990, a wet year. Nitrogen concentration was lower in plants exposed to elevated CO2, but total standing crop N was greater at high CO2. Increased root biomass under elevated CO2 apparently increased N uptake. The biomass production response to elevated CO2 was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated CO2 was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and belowground biomass could slow microbial degradation of soil organic matter and surface litter, thereby exacerbating N limitation in the long term.  相似文献   
9.
Responses in stomatal conductance (g st ) and leaf xylem pressure potential ( leaf ) to elevated CO2 (2x ambient) were compared among 12 tallgrass prairie species that differed in growth form and growth rate. Open-top chambers (OTCs, 4.5 m diameter, 4.0 m in height) were used to expose plants to ambient and elevated CO2 concentrations from April through November in undisturbed tallgrass prairie in NE Kansas (USA). In June and August, leaf was usually higher in all species at elevated CO2 and was lowest in adjacent field plots (without OTCs). During June, when water availability was high, elevated CO2 resulted in decreased g st in 10 of the 12 species measured. Greatest decreases in g st (ca. 50%) occurred in growth forms with the highest potential growth rates (C3 and C4 grasses, and C3 ruderals). In contrast, no significant decrease in g st was measured in the two C3 shrubs. During a dry period in September, reductions in g st at elevated CO2 were measured in only two species (a C3 ruderal and a C4 grass) whereas increased g st at elevated CO2 was measured in the shrubs and a C3 forb. These increases in g st were attributed to enhanced leaf in the elevated CO2 plants resulting from increased soil water availability and/or greater root biomass. During a wet period in September, only reductions in g st were measured in response to elevated CO2. Thus, there was significant interspecific variability in stomatal responses to CO2 that may be related to growth form or growth rate and plant water relations. The effect of growth in the OTCs, relative to field plants, was usually positive for g st and was greatest (>30%) when water availability was low, but only 6–12% when leaf was high.The results of this study confirm the importance of considering interactions between indirect effects of high CO2 of plant water relations and direct effects of elevated CO2 on g st , particularly in ecosystems such as grasslands where water availability often limits productivity. A product of this interaction is that the potential exists for either positive or negative responses in g st to be measured at elevated levels of CO2.  相似文献   
10.
The U.S. Environmental Protection Agency's (EPA's), Environmental Monitoring and Assessment Program (EMAP) is developing a landscape-level conceptual model to evaluate the condition of depressional (basin-type) wetlands in the prairie pothole region (PPR) of the United States. This effort is underway to determine the current condition of the Nation's wetlands and to track how it is improving or degrading over time, as well as to identify management priorities over major geographic areas. The depressional wetlands in the PPR were selected by EMAP both because of the importance of this region for waterfowl and because of the efforts currently being conducted by federal agencies and academic institutions in this region. The PPR provides nesting habitat for more than 15 species of ducks, and supports as much as half of the total production of dabbling and diving ducks in North America. Wetlands in this area became a vulnerable resource after extensive draineage in the 1800s. We propose a conceptual model that represents a framework for guiding the development of ecological indicators, research activities, and data collection for the evaluation of wetland conditions. In princple, this conceptual model is applicable to wetlands in any part of the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号