首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
The growth of Nicotiana silvestris in suspension culture is inhibited by all of the common protein amino acids at the millimolar level, except for L-glutamine. A defined experimental system for growth/inhibition studies has been established, and growth studies were carried out with cells that had been maintained in the exponential growth phase for at least 10 generations (EE cells). The following results were obtained after particularly detailed studies with aromatic amino acids. The onset of inhibition was preceded by a duration of normal growth rate which varied within a range of 12 to 48 h. The degree of inhibition was directly proportional to amino acid concentration and inversely related to the initial cell density of the inoculum. A slowed, but still exponential rate of growth persisted during an early phase of inhibition. Under sufficiently severe conditions, this was followed by progressive diminution of growth rate and eventual lysis. The most drastic inhibitory effects caused by aromatic amino acids were in the order: phenylalanine, tryptophan and tyrosine. When EE cells cultivated under conditions of growth inhibition were diluted into fresh medium, immediate resumption of growth at the uninhibited rate occurred and persisted. On the other hand, when growth-inhibited EE cells were diluted into medium containing the same concentration of amino acid used in the first round of growth, an initial burst of uninhibited growth lasting about 24 h was followed by a drastic, progressively declining growth rate which deteriorated to cell death and lysis. When cells in stationary phase were used as an inoculum, as is done in typical growth characterizations with suspension cultures, the sensitivity to inhibition during the subsequent exponential growth phase was several-fold greater than was the case with EE cells. Hypotheses that growth inhibition might be caused by ammonia toxicity, keto-acid toxicity, or by inhibition of nitrate utilization were ruled out. Observations that provide new insight are: (i)growth-inhibited cells undergo drastic plasmolysis, (ii) L-glutamine is an effective antagonist of amino-acid inhibitors, and (iii) growth-inhibited cells exhibit a transient restoration of normal growth rate upon dilution into fresh growth medium. These results implicate a linkage of amino acids with osmotic regulation and nitrogen metabolism.  相似文献   
2.
3.
We investigated the mechanism underlying the perception of extracellular changes in osmotic pressure in Vallisneria gigantea Graebner and transgenic Arabidopsis thaliana (L.) Heynh. expressing cytoplasmic aequorin. Hypertonic and hypotonic treatments of A. thaliana leaves each rapidly induced a Ca2+ transient. Both responses were essentially dependent on the presence of extracellular Ca2+ and were sensitive to Gd3+ a potential blocker of stretch-activated Ca2+ channels. Immediately after plasmolysis caused by hypertonic treatment and subsequent deplasmolysis caused by hypotonic treatment, the cells did not respond to a second hypertonic treatment and exhibited an impaired adhesion of the plasma membrane (PM) to the cell wall (CW). Recovery of the responsiveness required about 6 h. By contrast, no refractory phenomenon was observed in response to hypotonic treatment. Pretreatment with cellulase completely inhibited the Ca2+ transient induced by hypertonic treatment, but it did not affect the response to hypotonic treatment. V. gigantea mesophyll cells pretreated with cellulase exhibited an impaired adhesion of the PM to the CW. The leaf cells of multicellular plants can respond to both hypertonic and hypotonic treatments through the stretch-activated Ca2+ channels, whereas cellulase-sensitive adhesion of the PM to the CW is involved only in the response to hypertonic treatment.  相似文献   
4.
In order to analyze the distribution of lead between cell walls and plasmalemma, two-day-old maize seedlings (Zea mays L.) were incubated for 24 h on a solution of lead nitrate at a concentration causing 50% inhibition of root growth (10–5 M). Using the histochemical technique (precipitation of lead dithizonate), the distribution of lead in plasmolyzed and nonplasmolyzed cells of the root cortex was compared. This allowed us to separate the lead bound by cell walls from the lead located on the protoplast surface and in the periplasmic space. The plasmolysis was conducted prior to histochemical reaction by the incubation of seedling roots in 0.6 M sucrose solution for 30 min. The lead precipitates were located in cell walls and on the surface of protoplast. A small amount of lead was found in periplasmic space of some cells in root cortex. It is suggested that the lead is bound not only to the cell wall matrix but also to the plasmalemma.  相似文献   
5.
Summary Plasmolysis of hyphae of the oomycetesSaprolegnia ferax andAchlya ambisexualis and the ascomyceteNeurospora crassa produced abundant cytoplasmic strands between the retracted cytoplasm and punctate adhesions of the plasma membrane to the cell wall. These strands formed throughout the length of mature hyphae and are the first demonstration of Hechtian strands in hyphae. In contrast to similar strands in various plant cells, the strands inSaprolegnia lacked endoplasmic reticulum but contained F-actin, suggesting similarity between their adhesion sites and focal contacts in animal cells. However, strand adhesion to the wall was insensitive to RGD-containing peptides, suggesting that the trans-membrane adhesion molecules differ from animal integrins. The pattern of plasma membrane-cell wall adhesion varied in different zones along hyphae, with broad, irregular connections in the extreme apex, uniform and continuous connection in a transition zone, and small, punctate adhesions in the mature subapical zone, suggesting differential functions in these different regions. The apical adhesions are important in tip growth, as diverse inhibitors induced concomitant changes in hyphal growth and the adhesions in the apical and transition zones. Plasmolysis also induced cytoplasmic migrations throughout hyphae. Such migrations were dominated by the central cytoplasm, and produced distorted organelles which spanned central and peripheral cytoplasm, thus supporting the idea that the adhesions in mature zones of hyphae anchor the peripheral cytoplasm and facilitate cytoplasmic and organelle migrations.Abbreviations OM organic medium - RP rhodamine phalloidin - DIC differential interference contrast - PIPES piperazine-N,N-bis-2-ethanosulphonic acid  相似文献   
6.
Closterium acerosum Ehrenberg (Chlorophyta) produced a distinct network of thin cytoplasmic strands, or Hechtian strands, upon controlled plasmolysis in a sucrose solution. The strands persisted for 30 min or longer and could be visualized with both LM and EM. Near the plasma membrane of the polar zones of plasmolyzing protoplasts, the strands formed a “lattice”‐like arrangement with interstrand spacing of 120–130 nm. The strands terminated at the fibrous zone of the inner cell wall stratum. Although actin cables could be found attached to the plasma membrane upon rhodamine phalloidin labeling of membrane ghosts, neither microfilaments nor microtubules were found in Hechtian strands at any stage of development. The formation of strands was not disrupted by centrifugation at 8000 g or by repeated cycles of plasmolysis‐deplasmolysis. Application of microtubule‐ or microfilament‐affecting agents or various proteolytic/polysaccharide‐degrading enzymes did not disrupt the formation of strands. Cold treatment of cells resulted in the formation of Hechtian strands.  相似文献   
7.
Ewa Durska 《Grana》2018,57(4):260-272
Gypsum deposits formed during the middle Miocene Badenian Salinity Crisis (BSC) contain perfectly preserved palynomorphs with fossilised cytoplasms. The nature of the cytoplasm indicates that plasmolysis in a condensed brine solution took place prior to fossilisation. Two forms of plasmolysis are present: concave in zonoporate grains and convex in saccate, inaperturate, pantoporate and colporate specimens. The composition of the palynomorph assemblage is typical for the Miocene European lowland, with plants representing swamp, riparian, mesic and upland communities. Among the dominant taxa are: Pinus/Picea, Taxodium/Glyptostrobus, Ericaceae, Cathaya, Engelhardia and Quercus. The percentages of pollen grains with preserved content are very high for some taxa (Engelhardia, Ericaceae, Fagus, Liquidambar, Potamogeton, Quercus, Taxodium/Glyptostrobus and the Tricolporopollenites pseudocingulum group) and constitute a valuable indicator of the proximity of source vegetation to the depositional basin. Analysis of the pollens shows that, despite the salinity crisis, swamp/riparian and mesic plant communities surrounded the sedimentary basin and the climate remained humid.  相似文献   
8.
Throughout the wheat‐growing regions of Australia, chilling temperatures below 2 °C occur periodically on consecutive nights during the period of floral development in spring wheat (Triticum aestivum L.). In this study, wheat plants showed significant reductions in fertility when exposed to prolonged chilling temperatures in controlled environment experiments. Among the cultivars tested, the Australian cultivars Kite and Hartog had among the lowest levels of seed set due to chilling and their responses were investigated further. The developmental stage at exposure, the chilling temperature and length of exposure all influenced the level of sterility. The early period of booting, and specifically the +4 cm auricle distance class, was the most sensitive and corresponded to meiosis within the anthers. The response of microtubules to chilling during meiosis in Hartog was monitored, but there was little difference between chilled and control plants. Other abnormalities, such as plasmolysis and cytomixis increased in frequency, were associated with death of developing pollen cells, and could contribute to loss of fertility. The potential for an above‐zero chilling sensitivity in Australian spring wheat varieties could have implications for exploring the tolerance of wheat flower development to chilling and freezing conditions in the field.  相似文献   
9.
用高渗溶液处理植物鲜嫩组织,R_t增至对照的3~4倍,用电导率不同的营养液浸泡被测组织,发现R_t值并不依赖于环境溶液的电导率。在利用胞外电极和直流电测量R_t时,施加于组织的电流约有75~90%是流经共质体的。R_t主要是反映了共质体的电导状况,即反映了膜透性的大小和细胞间电偶联的程度。  相似文献   
10.
Plants of Pisum sativum L. cv. Alaska wilt resistant were subjected to two different water stress regimes under controlled environment conditions: watering was stopped either on the 7th day (early stress) or on the 21st day (late stress) after planting. Plants under the early stress regime developed drought tolerance (adapted), while those under late stress did not. The apparent viscosity of the protoplasm of subepidermal stem basis cells was analyzed by the centrifugation and plasmolysis form method during the entire growth period.
The apparent viscosity of the subepidermal stem basis cells changed with plant age and was highest in 3-week-old plants. In controls the relation of apparent viscosity to age was the same when measured under full turgor and in relaxed state. Under early stress condition, however, the pattern of the viscosity changes with plant age was significantly different for turgescent and relaxed cells. In four week old plants, a higher apparent viscosity was measured in relaxed adapted cells than in relaxed control cells. It is suggested that the higher apparent viscosity is the result of a delayed cell aging.
Apparent viscosity was inversely proportional to soil moisture content and the osmotic potential of the cell sap for the cells of late stress plants, whereas no clear relation was found for the cells of early stress plants. This difference may indicate two mechanisms of viscosity changes: 1) osmotic dehydration of the protoplasm under water stress (passive viscosity change), 2) changes in the amount, hydration or architecture of macromolecules present in the cytoplasm (active viscosity change). Whereas differences in the apparent viscosity between control and stressed cells may not be the cause of drought tolerance, they seem to indicate the development of drought tolerance. Water stress history and plant age were the most critical factors controlling the apparent viscosity changes observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号