首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   18篇
  国内免费   12篇
  2023年   11篇
  2022年   1篇
  2021年   6篇
  2020年   10篇
  2019年   11篇
  2018年   16篇
  2017年   8篇
  2016年   8篇
  2015年   13篇
  2014年   15篇
  2013年   31篇
  2012年   14篇
  2011年   19篇
  2010年   7篇
  2009年   16篇
  2008年   15篇
  2007年   15篇
  2006年   12篇
  2005年   15篇
  2004年   7篇
  2003年   9篇
  2002年   10篇
  2001年   10篇
  2000年   3篇
  1999年   5篇
  1998年   16篇
  1997年   9篇
  1996年   6篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   7篇
  1984年   14篇
  1983年   10篇
  1982年   12篇
  1981年   10篇
  1980年   13篇
  1979年   9篇
  1978年   3篇
  1977年   4篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
排序方式: 共有458条查询结果,搜索用时 15 毫秒
1.
2.
H Slor 《Mutation research》1973,19(2):231-235
The carcinogen 7-bromomethylbenz(a)anthracene (BBA), which can bind strongly to DNA, induces unscheduled DNA synthesis (DNA repair) in normal lymphocytes but almost none in lymphocytes from patients with Xeroderma pigmentosum (XP), and inherited disease known to be defective in excision repair of ultraviolet-damaged DNA. We studied [3H]BBA's ability to bind to DNA of normal and XP lymphocytes, its influence on unscheduled DNA synthesis, and its removal from the DNA of both cell types. We found that 20–30% of the BBA is bound to macromolecules other than DNA and that its binding to DNA is essentially complete after 30 min. The induction of unscheduled DNA synthesis by the carcinogen in XP lymphocytes was approximately 10% of that induced in normal lymphocytes. While 15–20% of the BBA was removed from the DNA of normal cells 6 h after treatment, only 1–2% was removed from the DNA of XP cells. Thus, XP cells not only are defective in repairing ultraviolet-damaged DNA and excising thymine dimers but also fail to repair DNA damaged by certain carcinogens, and, most importantly, fail to remove the DNA-bound carcinogen, BBA.  相似文献   
3.
Acetylation at the -amino terminal is a common post-translational modification of many peptides and proteins. In the case of the potent opiate peptide -endorphin, -N-acetylation is a known physiological modification that abolishes opiate activity. Since there are no known receptors for -N-acetyl--endorphin, we have studied the association of this peptide with calmodulin, a calcium-dependent protein that binds a variety of peptides, phenothiazines, and enzymes, as a model system for studying acetylated endorphin-protein interactions. Association of the acetylated peptide with calmodulin was demonstrated by cross-linking with bis(sulfosuccinimidyl)suberate; like -endorphin, adducts containing 1 mol and 2 mol of acetylated peptide per mole calmodulin were formed. Some of the bound peptides are evidently in relatively close proximity to each other since, in the presence of amidated (i.e., lysine-blocked) calmodulin, cross-linking yielded peptide dimers. The acetylated peptide exhibited no appreciable helicity in aqueous solution, but in trifluoroethanol (TFE) considerable helicity was formed. Also, a mixture of acetylated peptide and calmodulin was characterized by a circular dichroic spectrum indicative of induced helicity. Empirical prediction rules, applied earlier to -endorphin, suggest that residues 14–24 exhibit -helix potential. This segment has the potential of forming an amphipathic helix; this structural unit is believed to be important in calmodulin binding. The acetylated peptide was capable of inhibiting the calmodulin-mediated stimulation of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity with an effective dose for 50% inhibition of about 3 µM; this inhibitory effect was demonstrated using both an enzyme-enriched preparation as well as highly purified enzyme. Thus, acetylation at the -amino terminal of -endorphin, although abolishing opiate activity, does not interfere with the binding to calmodulin. Indeed, -endorphin and the -N-acetylated peptide behave very similarly with respect to calmodulin association.Portions of this work are in partial fulfillment of the requirements for the Ph.D. degree from Vanderbilt University.  相似文献   
4.
We have studied the mechanisms of breakdown of 2'-5' oligoadenylates. We monitored the time-courses of degradation of ppp(A2'p5')nA (dimer to tetramer) and of 5'OH-(A2'p5')nA (dimer to pentamer) in unfractionated L1210 cell extract. The 5' triphosphorylated 2'-5' oligoadenylates are converted by a phosphatase activity. However, 2'-5' oligoadenylates are degraded mainly by phosphodiesterase activity which splits the 2'-5' phosphodiester bond sequentially at the 2' end to yield 5' AMP and one-unit-shorter oligomers. The nonlinear least-squares curve-fitting program CONSAM was used to fit these kinetics and to determine the degradation rate constant of each oligomer. Trimers and tetramers, whether 5' triphosphorylated or not, are degraded at the same rate, whereas 5' triphosphorylated dimer is rapidly hydrolyzed and 5'-OH dimer is the most stable oligomer. The interaction between degradation enzymes and the substrate strongly depends on the presence of a 5' phosphate group in the vicinity of the phosphodiester bond to be hydrolyzed; indeed, when this 5' phosphate group is present, as in pp/pA2'p5'A/or A2'/p5'A2'p5'A/, affinity is high and maximal velocity is low. Such a degradation pattern can control the concentration of 2'-5' oligoadenylates active on RNAse L either by limiting their synthesis (5' triphosphorylated dimer is the primer necessary for the formation of longer oligomers) and/or by converting them into inhibitory (e.g., monophosphorylated trimer) or inactive (e.g., nonphosphorylated oligomers) molecules.  相似文献   
5.
A new class of stimulators of basal activity of a number of calmodulin-dependent enzymes have been previously isolated from bovine hypothalamus. One of these stimulators, denoted as C3, has been purified to homogeneity by reverse phase HPLC and tentatively identified as thymosin 4 (1–39) by mass spectrometry and Edman microsequence analysis. The stimulating effect of C3 on rabbit skeletal muscle MLCK basal activity was compared with that of thymosin 1 and thymosin 4 (16–38). Evidence is presented that all the indicated compounds are Ca2+-independent high-affinity MLCK stimulators. The potency of the stimulators in activating the enzyme was: C3>4>(CaM+Ca2+>1.This revised version was published online in June 2005 with corrections to the author name Gurvits.  相似文献   
6.
Summary Glucagon increased alanine amino transferase (AAT) activity in perfused rat liver by about 90% over control. Propranolol, the beta receptor antagonist, abolished the effect of glucagon on this enzyme. Well known beta receptor agonists like isoproterenol, norepinephrine and epinephrine also increased the enzyme activity under identical condition and the enhancement was similarly abolished by propranolol. These experiments suggest that the effect of glucagon on AAT was mediated through beta adrenergic receptor. However, the interesting observation was that phenylephrine, alpha receptor agonist and phenoxybenzamine and tolazoline, two alpha receptor antagonists, increased the AAT activity like glucagon in perfusion experiments and the effects of all these three agents were also abolished by propranolol. Glucagon, when perfused with phenoxybenzamine showed some additive effect. From all these results we are proposing that in our system phenoxybenzamine is acting as beta agonist although it is known to be an alpha antagonist.  相似文献   
7.
Regional Distribution of Calmodulin Activity in Rat Brain   总被引:2,自引:1,他引:1  
Calmodulin activity in 68 discrete areas of rat brain, obtained by micropunch technique, was assessed by its capacity to activate a calmodulin-sensitive form of phosphodiesterase. In general, the activity of calmodulin was higher in the telencephalon, limbic system, and hypothalamus than in the mesencephalon, pons, cerebellum, and medulla. However, there were substantial differences in calmodulin activity in discrete nuclei of each region. The regional distribution of calmodulin activity in rat brain does not appear to correlate with that of any of the known putative neurotransmitters or peptides.  相似文献   
8.
ATP-dependent activation and deactivation of retinal rod outer segment phosphodiesterase is affected by calcium [Kawamura, S. and Bownds, M. D., J. Gen. Physiol. 77:571-591(1981)]. Our data demonstrate that although calmodulin has been found in rod outer segments [Liu, Y. P. and Schwartz, H., Biochim. Biophys. Acta 526:186-193(1978); Kohnken, R. E. et al, J. Biol. Chem. 256:12517-12522(1981)], this protein is not involved in calcium-dependent phosphodiesterase activation at light levels at which calcium clearly affects this enzyme's activity. Furthermore, calmodulin does not mediate the calcium-dependent deactivation of phosphodiesterase.  相似文献   
9.
Meylin partially purified from spinal cords of dysmyelinating mutant (shiverer) mice had almost three-fold the specific activity of 5′-nucleotidase found in the respective myelin fraction from normal mice. The specific activities of two other normally myelin-associated enzymes, 2′,3′-cyclic nucleotide-3′-phosphohydrolase and carbonic anhydrase, were only slightly higher in the myelin membranes from shiveres, compared to those from controls. In the mutants, the three enzymes probably occur in oligodendrocyte processes. Hhypothetically, the 5′-nucleotidase in the myelin sheath in shiverer and normal mice may be localized in specialized structures.  相似文献   
10.
大黄蒽醌衍生物是中药大黄的主要成份。该类衍生物与钙调素(calmo-dulin,CaM)依赖的磷酸二酯酶(PDE)的相互作用表明:它们可作用子钙调素。其中,大黄酸结合CaM并抑制CaM依赖的磷酸二酯酶(CaM-PDE);而大黄素、大黄酚和芦荟大黄素既刺激CaM-PDE的活力,又刺激PDE的基础活力,其作用机制尚待阐明;当有Ca~(2+)或无Ca~(2+)条件下测定时,大黄酸对PDE基础活力均无影响。表明:象其它的CaM拮抗剂一样,大黄酸能抑制钙调素依赖的PDE的活力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号