首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  1991年   1篇
  1987年   1篇
  1982年   2篇
  1979年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Two species ofConsolida are described as new:C. lorestanica is distributed in W. Iran (Lorestan), andC. kandaharica is endemic to S. Afghanistan.Dedicated to Hofrat Prof. DrK. H. Rechinger on the occasion of this 80th birthday.  相似文献   
2.
3.
Several subspecies are defined within Codium fragile, including the invasive C. fragile ssp. fragile, first reported in New Zealand in 1973. An endemic subspecies, C. fragile ssp. novae‐zelandiae, is also found throughout New Zealand. The two subspecies exhibit morphological and molecular variation, although these have never been evaluated together. We compared variation between subspecies at locations in Auckland, identifying subspecies using rps3‐rpl16 DNA sequence data, and assessing gross morphological differences, anatomical utricle characters and morphometrics. The taxonomic utility of the morphometric data sets was assessed by linear discriminant analysis. Utricle characters and measurements varied within individual thalli and between different preservation methods. The phenotypes of both subspecies were highly variable and influenced by environment. Accurate subspecies delimitation using morphological data was not possible; the discriminant analyses performed no better than chance for all combinations of the morphological data. Specimens from New Zealand, Canada, Australia and Ireland were sequenced using both the rps3‐rpl16 and tufA plastid markers. The tufA elongation factor was shown to be a good candidate for differentiating subspecies of C. fragile. This marker is twice the length of the rps3‐rpl16 spacer, shows greater variation between ssp. fragile and novae‐zelandiae, and is less prone to sequencing error. A simple restriction enzyme digest of the tufA amplicon can distinguish ssp. fragile and ssp. novae‐zelandiae. Our study expands the known range of the ssp. fragile in New Zealand, including the first record of this subspecies from the west coast of Auckland, and points to a need to re‐evaluate morphological and molecular criteria for subspecies currently defined within C. fragile.  相似文献   
4.
The tribe Iphigenieae (Colchicaceace, Liliales) includes two genera, viz. Camptorrhiza and Iphigenia, which are distributed in Africa, India, and Australasia. Iphigeniais represented by 12 species, of which six occur in India while Camptorrhiza comprises one species each in Africa (C. strumosa) and India (C. indica). The genusCamptorrhiza possesses a knee-shaped tuber attached to the corms, filaments with a thick bulge in the middle and styles with single stigma. Iphigenia on the other hand lacks knee-shaped tuber, bears linear filaments and has styles with three stigmas. Camptorrhiza indica possesses ovoid corms, linear filaments and styles with a single stigma. These characters are intermediate between Iphigenia and Camptorrhiza and hence we studied the cytogenetics and phylogenetic placement of this species to ascertain its generic identity. Somatic chromosome count (2n = 22) and karyotypic features of C. indica are very similar to that of Iphigenia species. Molecular phylogenetic studies based on atpB-rbcL, rps16, trnL, and trnL-F regions showed that C. indica is nested within a lineage of Indian Iphigenia species. Thus, C. indica was reduced to a species of Iphigenia, i.e., I. ratnagirica. Camptorrhiza is now a monotypic genus restricted only to southern Africa. A key to the IndianIphigenia species is provided. In addition, a new combination Wurmbea novae-zelandiae is proposed for Iphigenia novae-zelandiae.  相似文献   
5.
Four new species ofJacaranda have been found in the coastal mountain-ranges of SE-Brazil where they occupy characteristic ecological positions.J. montana andJ. subalpina are related toJ. puberula agg.,J. pulcherrima shows affinities toJ. ulei but also toJ. subalpina. J. crassifolia is very distinct and possibly related toJ. obovata.
  相似文献   
6.
7.
Cold adapted plants, such as cushion plants, may be particularly sensitive to climate warming because of their compact growth form and high branch density. In the oceanic southern hemisphere, cushion communities tend to have large range distributions at low latitudes (sea level to low alpine), thus providing an opportunity to test the effects of temperature on plant morphology and reproduction across gradients. Using Donatia novae‐zelandiae as a model species, we compared the leaf morphology, reproduction and responses to warming. Two low‐alpine sites (Maungatua (880 m a.s.l.), Blue Mountains (1000 m a.s.l.)) and two sea‐level sites (Waituna 1 (0 m a.s.l.), Waituna 2 (0 m a.s.l.)) in South Island, New Zealand were used. Donatia novae‐zelandiae cushions differed significantly between the high‐elevation and sea‐level sites both morphologically and in terms of reproduction. High‐elevation cushions produced more flowers (threefold more flowers per plant) and seeds (sevenfold more seeds per capsule) than at sea level, but leaves were larger at sea level (in length and specific leaf area). The cushions were also twice as compact at the high‐elevation sites. After two growing seasons of artificial warming, seed production (35%), leaf length (7%) and width (13%), and specific leaf area (63%) significantly decreased in D. novae‐zelandiae plants; flower production was not significantly affected. Cushion plant morphology and reproduction were significantly affected by environmental drivers at their establishment sites, but all populations responded negatively to artificial warming of 1–3°C. Many cushion plants are considered keystone species because of their propensity to facilitate the growth and establishment of other plant species, the inferred negative effects of global warming on cushion plant species may have a cascading effect on other alpine plant groups.  相似文献   
8.
9.
Asperula sect.Oppositifoliae is validated. 2 new species ofAsperula and 7 new species and 1 variety ofGalium from Iran are described, discussed in respect to their affinities and illustrated. 2 subspecies are raised to species rank.  相似文献   
10.
Saponaria stenopetala sp.n. in Eastern Afghanistan is close toS. pachyphylla Rech. f. andS. subrosularis Rech. f.—The nearest allies ofS. makranica sp.n. from Western Pakistan and Southeastern Iran areS. kermanensis Bornm. andS. floribunda (Kar. & Kir.)Boiss.
Flora Iranicae praecursores 36–37. — Praecursores praecurrentes in Pl. Syst. Evol.139, 313–317 (1982).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号