首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   2篇
  国内免费   1篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   8篇
  2015年   2篇
  2014年   5篇
  2013年   10篇
  2012年   3篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   9篇
  2007年   6篇
  2006年   10篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
N‐Methyl‐D‐aspartate (NMDA) receptors are key components in synaptic communication and are highly relevant in central nervous disorders, where they trigger excessive calcium entry into the neuronal cells causing harmful overproduction of nitric oxide by the neuronal nitric oxide synthase (nNOS) protein. Remarkably, NMDA receptor activation is aided by a second protein, postsynaptic density of 95 kDa (PSD95), forming the ternary protein complex NMDA/PSD95/nNOS. To minimize the potential side effects derived from blocking this ternary complex or either of its protein components, a promising approach points to the disruption of the PSD‐95/nNOS interaction which is mediated by a PDZ/PDZ domain complex. Since the rational development of molecules targeting such protein‐protein interaction relies on energetic and structural information herein, we include a thermodynamic and structural analysis of the PSD95‐PDZ2/nNOS‐PDZ. Two energetically relevant events are structurally linked to a “two‐faced” or two areas of recognition between both domains. First, the assembly of a four‐stranded antiparallel β‐sheet between the β hairpins of nNOS and of PSD95‐PDZ2, mainly enthalpic in nature, contributes 80% to the affinity. Second, binding is entropically reinforced by the hydrophobic interaction between side chains of the same nNOS β‐hairpin with the side chains of α2‐helix at the binding site of PSD95‐PDZ2, contributing the remaining 20% of the total affinity. These results suggest strategies for the future rational design of molecules able to disrupt this complex and constitute the first exhaustive thermodynamic analysis of a PDZ/PDZ interaction.  相似文献   
2.
In a preliminary article, we reported a series of 4,5-dihydro-1H-pyrazole derivatives as neuronal nitric oxide synthase (nNOS) inhibitors. Here we present the data about the inhibition of inducible nitric oxide synthase (iNOS) of these compounds. In general, we can confirm that these pyrazoles are nNOS selective inhibitors. In addition, taking these compounds as a reference, we have designed and synthesized a series of new derivatives by modification of the heterocycle in 1-position, and by introduction of electron-donating or electron-withdrawing substituents in the aromatic ring. These derivatives have been evaluated as nNOS and iNOS inhibitors in order to identify new compounds with improved activity and selectivity. Compound 3r, with three methoxy electron-donating groups in the phenyl moiety, is the most potent nNOS inhibitor, showing good selectivity nNOS/iNOS.  相似文献   
3.
人体消化道的神经构成复杂、功能多样,向来是学术界的研究热点之一。与其相关的新观点、新概念、新物质的报道层出不穷。20世纪末期,基于对一氧化氮(NO)生物学作用广泛而深入地研究,人们发现并明确了NO是一种新型神经递质。由于此类以NO为递质的神经具有重要的生物学效应,学术界提出了氮能神经的概念从而为我们深入了解非肾上腺素能非胆碱能神经开辟了全新的视角,同时也彰显出氮能神经在生物体中潜在的重大作用。本文将针氮能神经在胃、肠道、食管等主要消化道器官的分布情况、对消化道正常生理功能调控、以及与相关消化道疾病病理联系等方面展开综述,并设想了氮能神经可能基于一氧化氮合酶的各种异构体的相关性而在消化道正常、疾病两态之间的平衡机制中存在某种作用和联系。  相似文献   
4.
脑型一氧化氮合成酶的钙调蛋白结合区的表达及活性鉴定   总被引:1,自引:0,他引:1  
用PCR法克隆出nNOS的CaM结合区基因(nNOS 2455~2988bp),并在大肠杆菌中进行了高效表达。经金属离子螯合亲和层析得到纯度为90%以上的重组蛋白.分子量为22kDa,CaM Oveday assay证实该蛋白具有CaM的结合活性。由于所表达的重组蛋白既具有序列特异性又具有CaM的结合活性.因此。可将它作为筛选nNOS特异性抑制肽的靶蛋白,亦可用于特异性抗体的制备。  相似文献   
5.
The inability of insulin to stimulate glucose metabolism in skeletal muscle fibres is a classic characteristic of type 2 diabetes. Using the non-obese Goto-Kakizaki rat as an established animal model of this type of diabetes, sucrose gradient centrifugation studies were performed and confirmed the abnormal subcellular location of the glucose transporter GLUT4. In addition, this analysis revealed an unexpected drastic reduction in the surface membrane marker beta-dystroglycan, a dystrophin-associated glycoprotein. Based on this finding, a comprehensive immunoblotting survey was conducted which showed a dramatic decrease in the Dp427 isoform of dystrophin and the alpha/beta-dystroglycan subcomplex, but not in laminin, sarcoglycans, dystrobrevin, and excitation-contraction-relaxation cycle elements. Thus, the backbone of the trans-sarcolemmal linkage between the extracellular matrix and the actin membrane cytoskeleton might be structurally impaired in diabetic fibres. Immunohistochemical studies revealed that the reduction in the dystrophin-dystroglycan complex does not induce obvious signs of muscle pathology, and is neither universal in all fibres, nor fibre-type specific. Most importantly, the expression of alpha-syntrophin and the syntrophin-associated neuronal isoform of nitric oxide synthase, nNOS, was demonstrated to be severely reduced in diabetic fibres. The loss of the dystrophin-dystroglycan complex and the syntrophin-nNOS complex in selected fibres suggests a weakening of the sarcolemma, abnormal signalling and probably a decreased cytoprotective mechanism in diabetes. Impaired anchoring of the cortical actin cytoskeleton via dystrophin might interfere with the proper recruitment of the glucose transporter to the surface membrane, following stimulation by insulin or muscle contraction. This may, at least partially, be responsible for the insulin resistance in diabetic skeletal muscles.  相似文献   
6.
脑缺血再灌注大鼠模型eNOS和nNOS的变化   总被引:1,自引:0,他引:1  
目的通过对缺血再灌注早期eNOS与nNOS表达情况的观察,探讨NO在脑缺血再灌注损伤中发挥神经毒性作用时是否出现一氧化氮合酶(NOS)不同亚型的变化。方法采用线栓法制作大鼠脑缺血再灌注模型,激光多普勒灌流监测仪测血流来判断模型是否成功,Western blot方法检测eNOS与nNOS变化。结果血管内皮细胞内eNOS表达在缺血1h内升高,之后到再灌注2h内持续降低;而nNOS的表达在缺血到再灌注2h内持续上升。结论大鼠脑缺血再灌注模型中eNOS与nNOS的变化趋势不同。表明NO在缺血性脑损伤的病理过程的发挥作用与NOS亚型的变化有关。  相似文献   
7.
Nitric oxide (NO) is a janus faced chemical messenger, which, in the recent years, has been the focus of neurobiologists for its involvement in neurodegenerative disorders in particular, Parkinson's disease (PD). Nitric oxide synthase, the key enzyme involved in NO production exists in three known isoforms. The neuronal and inducible isoforms have been implicated in the pathogenesis of PD. These enzymes are subject to complex expressional and functional regulation involving mRNA diversity, phosphorylation and protein interaction. In the recent years, mRNA diversity and polymorphisms have been identified in the NOS isoforms. Some of these genetic variations have been associated with PD, indicating an etiological role for the NOS genes. This review mainly focuses on the NOS genes - their differential regulation and genetic heterogeneity, highlighting their significance in the pathobiology of PD.  相似文献   
8.

Background

Experimental evidence suggests that heat shock proteins (HSP) and asymmetric dimethylarginine (ADMA) are induced in the state of chronic inflammation and stress conditions. They are both inhibitors of nitric oxide synthase (NOS). The aim of this study was to evaluate the correlation between ADMA and HSP70, in patients with type 2 diabetes with respect to serum levels of C reactive protein (CRP).

Methods

We quantified serum HSP70, ADMA and CRP in 80 newly-diagnosed patients with type 2 diabetes plus 80 age-, sex and BMI-matched healthy controls. The patients and controls were also stratified into groups of high and low CRP levels (cut-point: 2.5 mg/ml).

Results

Patients with type 2 diabetes had significantly higher serum HSP70 (0.52 [0.51–0.66] vs. 0.27 [0.26–0.36], p < 0.001), ADMA (0.86 [0.81–0.92] vs. 0.72 [0.71–0.85], p < 0.05) and CRP (2.9 [1.7–3.4] vs. 1.6[1.2–2.3], p < 0.05) compared with healthy controls. Serum HSP70 and ADMA levels were significantly correlated in patients with high CRP levels (r = 0.89, p < 0.01), whereas there were no correlation in patients with low CRP (r = − 0.37, p = 0.07) and controls. This correlation was significant (r = 0.77, p < 0.001) in patients with high CRP and also in patients with low CRP levels (r = − 0.51, p < 0.05), after multiple adjustments for LDL and HDL levels.

Discussion

We showed that, in a state of high inflammation; serum levels of ADMA parallel the HSP70 levels. However in low inflammation, they are negatively correlated. The duality in HSP70 and ADMA correlation may be related to the duality of NOS function in low and high CRP levels.  相似文献   
9.
Dynein light chain LC8 is a small, dimeric, and very highly conserved globular protein that is an integral part of the dynein and myosin molecular motors but appears to have a broader role in multiple protein complexes unrelated to molecular motors. LC8 binds to two families of targets: those having a KXTQT sequence fingerprint and those having a GIQVD fingerprint. All known LC8 binding partners containing these fingerprints share a common binding site on LC8 that raises the question of what determines binding specificity. Here, we present the crystal structure of apo-LC8 at 1.7-Å resolution, which, when compared with the crystal structures of several LC8 complexes, gives insight into the mechanism underlying the binding diversity of LC8. Peptide binding is associated with a shift in quaternary structure that expands the hydrophobic binding surface available to the ligand, in addition to changes in tertiary structure and ordering of LC8 around the binding groove. The observed quaternary shift suggests a mechanism by which binding at one of the two identical sites can influence binding at the other. NMR spectra of titrations with peptides from each fingerprint family show evidence of allosteric interaction between the two binding sites, to a differing degree in the two ligand families. Allosteric interaction between the binding sites may be a mechanism to promote simultaneous binding of ligands from the same family, providing a physiological role for the two fingerprints.  相似文献   
10.
Pamenter ME  Hogg DW  Buck LT 《FEBS letters》2008,582(12):1738-1742
Increased nitric oxide (NO) production from hypoxic mammalian neurons increases cerebral blood flow (CBF) but also glutamatergic excitotoxicity and DNA fragmentation. Anoxia-tolerant freshwater turtles have evolved NO-independent mechanisms to increase CBF; however, the mechanism(s) of NO regulation are not understood. In turtle cortex, anoxia or NMDAR blockade depressed NO production by 27+/-3% and 41+/-5%, respectively. NMDAR antagonists also reduced the subsequent anoxic decrease in NO by 74+/-6%, suggesting the majority of the anoxic decrease is due to endogenous suppression of NMDAR activity. Prevention of NO-mediated damage during the transition to and from anoxia may be incidental to natural reductions of NMDAR activity in the anoxic turtle cortex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号