首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   2篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   1篇
  2018年   8篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   26篇
  2012年   10篇
  2011年   17篇
  2010年   7篇
  2009年   4篇
  2008年   8篇
  2007年   6篇
  2006年   12篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1983年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
1.
2.
Sea urchins have elaborated multiple defenses to assure monospermic fertilization. In this work, we have concentrated on a study of the mechanism(s) by which hydrogen peroxide (H2O2) prevents polyspermy in Arbacia punctulata. We found that it is not H2O2 but probably hypochlorous acid/hypochlorite (HOCl/OCl?) derived from H2O2 that is toxic to the supernumerary sperm. The spermicidal activity of H2O2 is potentiated by at least one order of magnitude by cupric ions (Cu2+). This increased toxicity is not due to the formation of hydroxyl radicals (·OH) because ·OH scavengers did not counteract the activity of Cu2+. More-over, substitution of Cu2+ by ferrous ions (Fe2+), which are known to cause formation of ·OH from H2O2, had no effect on fertilization even at 102?103 times higher concentrations. In contrast, 3-amino-1,2,4-triazole (AT), an HOCl/OCl? scavenger, totally reversed the toxic effects of Cu2+. Furthermore, we found that HOCl/OCl? is generated in solutions of H2O2 and Cu2+ in the presence of 0.5 M NaCl and that its accumulation is abolished by AT. Thus it is possible that the antifertility properties of copper are due to its ability to mediate formation of HOCl/OCl?. HOCl/OCl? generated by Cu2+ from H2O2 and Cl?, a low concentration of exogenously added HOCl/OCl?, or increased concentrations of H2O2 has similar inhibitory effects on the fertilization process in sea urchins. Therefore, we suggest that polyspermy is prevented by the action of a myeloperoxidase that affects the formation of HOCl/OCl? from the Cl? present in sea water through reaction with H2O2 generated by the newly fertilized egg.  相似文献   
3.
INTanDUCTI0NMyeloidcelldifferentiati0n,inwhichmultip0tentialprogenitorcellsarec0nvertedint00neofthesixmaturedifferentiatedcells,i.e.,erythr0cytes,platelets(megakary-ocytes),macr0phages,neutr0phils,e0sinophilsandbas0phils,involvestemporalre-gulati0nofexpression0fanumberoflineage-anddifferentiationstage-specificgenes.Understandingthedevel0pmentalspecificationoflineageaJswellasmaturationstageassociatedpatterns0fgeneexpressioninmyel0idcelldifferentiationrequiresanin-sightintothecontrol0findivid…  相似文献   
4.
Myeloperoxidase-H2O2-indole acetate system at pH 7.4 emitted light in visible region. Luminescent spectrum showed a weak peak at or near 480 nm and prominent peaks at or near 550, 580, and 620 nm with deep troughs near 500 and 600 nm. In some cases, no definite peak emissions near 550 and 580 nm, but a prominent broad emission between 550 and 580 nm, is observed. Such spectral patterns in the region of 510 to 620 nm were quite similar to those report for the luminescence of photo-products formed from the indole analogs (tryptophan and indole) in 50% alcohol irradiated by U.V. (365 nm) at 77°K, assuming red shift (20–25 nm) by solvent effect. Possible formation of indole acetate cation radical (a precursor of excited indole acetate) was discussed.  相似文献   
5.
The chronic wound environment is characterized by high concentrations of reactive oxygen species (ROS) and elevated levels of myeloperoxidase (MPO) and collagenases, together impairing the healing process. Therefore, the management of chronic wounds at a molecular level requires the synergistic use of antioxidants, MPO and collagenase inhibitors to simultaneously target multiple factors from wound pathogenesis. In this study, a polyphenolic extract from Hamamelis virginiana plant, rich in condensed and hydrolysable oligomeric tannins, was evaluated as an inhibitor of MPO and collagenase. In addition to efficient scavengers of radical and non-radical reactive species, H. virginiana polyphenols were found to act as substrates in the MPO peroxidase cycle, preventing the accumulation of ROS in the chronic wound site. Furthermore, it was also found that the plant exerts an irreversible inhibitory effect on collagenase activity (IC50 = 75 ± 10 μg/mL).  相似文献   
6.
《Free radical research》2013,47(5):285-296
Benzene, a known human rnyelotoxin and leukemogen is metabolized by liver cytochrome P-450 mono-oxygenase to phenol. Further hydroxylation of phenol by cytochrome P-450 monooxygenase results in the formation of mainly hydroquinone, which accumulates in the bone marrow. Bone marrow contains high levels of myeloperoxidase. Here we report that phenol hydroxylation to hydroquinone is also catalyzed by human myeloperoxidase in the presence of a superoxide anion radical generating system, hypoxanthine and xanthine oxidase. No hydroquinone formation was detected in the absence of myeloperoxidase. At low concentrations superoxide disniutase stimulated, but at high concentrations inhibited, the conversion of phenol to hydroquinone. The inhibitory effect at high superoxide dismutase concentrations indicates that the active hydroxylating species of myeloperoxidase is not derived from its interaction with hydrogen peroxide. Furthermore, catalase a hydrogen peroxide scavenger, was found to have no significant effect on hydroxylation of phenol to hydroquinone, supporting the lack of hydrogen peroxide involvement. Mannitol (a hydroxyl radical scavenger) was found to have no inhibitory effect, but histidine (a singlet oxygen scavenger) inhibited hydroquinone formation. Based on these results we postulate that a myeloperoxidase-superoxide complex spontaneously rearranges to generate singlet oxygen and that this singlet oxygen is responsible for phenol hydroxylation to hydroquinone. These results also suggest that myeloperoxidase dependent hydroquinone formation could play a role in the production and accumulation of hydroquinone in bone marrow, the target organ of benzene-induced myelotoxicity.  相似文献   
7.
Recent data suggest an inverse epidemiological association between intake of flavanol-rich cocoa products and cardiac mortality. Potential beneficial effect of cocoa may be attributed to flavanol-mediated improvement of endothelial function, as well as to enhancement of bioavailability and bioactivity of nitric oxide in vivo. ( ? )-Epicatechin is one bioactive flavanol found in cocoa. This review deals with protective actions of ( ? )-epicatechin on two key processes in atherogenesis, oxidation of LDL and damage to endothelial cell by oxidized LDL (oxLDL), with emphasis on data from this laboratory. ( ? )-Epicatechin not only abrogates or attenuates LDL oxidation but also counteracts deleterious actions of oxLDL on vascular endothelial cells. These protective actions are only partially shared by other vasoprotective agents such as vitamins C and E or aspirin. Thus, ( ? )-epicatechin appears to be a pleiotropic protectant for both LDL and endothelial cells.  相似文献   
8.
Ceruloplasmin (CP), the multicopper oxidase of plasma, interacts with myeloperoxidase (MPO), an enzyme of leukocytes, and inhibits its peroxidase and chlorinating activity. Studies on the enzymatic properties shows that CP behaves as a competitive inhibitor impeding the binding of aromatic substrates to the active centre of MPO. The contact between CP and MPO probably entails conformational changes close to the p-phenylenediamine binding site in CP, which explains the observed activation by MPO of the substrate's oxidation. CP subjected to partial proteolysis was virtually unable to inhibit activity of MPO. The possible protein–protein interface is comprised of the area near active site of MPO and the loop linking domains 5 and 6 in CP. One of the outcomes of this study is the finding of a new link between antioxidant properties of CP and its susceptibility to proteolysis.  相似文献   
9.

Background

Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood.

Methods

We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested.

Results

MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed.

Conclusions

Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins.

General significance

Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.  相似文献   
10.
Published data on the association between the myeloperoxidase (MPO) G-463A polymorphism and coronary artery disease (CAD) are inconclusive. To derive a more precise estimation of the relationship, a meta-analysis on this topic was performed. PubMed, EMBASE and Chinese national knowledge infrastructure were searched for studies regarding the association between the MPO G-463A polymorphism and CAD. A logistic regression analysis was used to estimate the genetic effect and the possible genetic model of action. Summary odds ratios (ORs) with their corresponding 95% confidence intervals (CIs) were calculated. There was strong evidence for an association between the MPO G-463A polymorphism and CAD. The genetic model of action was most likely to be co-dominant. Overall, the data showed that AA and GA genotypes were significantly associated with reduced risk of CAD (AA vs. GG: OR = 0.37, 95% CI = 0.17–0.78; GA vs. GG: OR = 0.73, 95% CI = 0.57–0.92). In subgroup analyses by study population and sources of controls, statistically significant results were observed in the Chinese population (AA vs. GG: OR = 0.21, 95% CI = 0.10–0.43; GA vs. GG: OR = 0.57, 95% CI =0.44–0.74) and in hospital-based control studies (AA vs. GG: OR = 0.20, 95% CI = 0.10–0.39; GA vs. GG: OR = 0.61, 95% CI = 0.48–0.77). This meta-analysis suggests that the MPO G-463A variant genotypes may be associated with decreased risk of CAD. However, given the limited number of studies and the potential biases, the influence of this polymorphism on CAD risk needs further investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号