首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   80篇
  国内免费   4篇
  2024年   2篇
  2023年   10篇
  2022年   5篇
  2021年   26篇
  2020年   39篇
  2019年   40篇
  2018年   26篇
  2017年   38篇
  2016年   31篇
  2015年   21篇
  2014年   33篇
  2013年   50篇
  2012年   22篇
  2011年   13篇
  2010年   25篇
  2009年   27篇
  2008年   18篇
  2007年   29篇
  2006年   27篇
  2005年   23篇
  2004年   18篇
  2003年   12篇
  2002年   18篇
  2001年   20篇
  2000年   14篇
  1999年   14篇
  1998年   15篇
  1997年   6篇
  1996年   10篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1977年   1篇
排序方式: 共有674条查询结果,搜索用时 45 毫秒
1.
  1. Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing‐induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size‐structured predation and cannibalism) in complex ecosystems undergoing rapid change.
  2. Changes in maturation size from fishing and predation have previously been explored with multi‐species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco‐evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size‐structured food‐web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species'' relative maturation sizes under different types of selection pressures.
  3. Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.
  4. The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium‐size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.
  5. Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species'' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.
  相似文献   
2.
Capture and long‐distance translocation of cleaner fish to control lice infestations on marine salmonid farms has the potential to influence wild populations via overexploitation in source regions, and introgression in recipient regions. Knowledge of population genetic structure is therefore required. We studied the genetic structure of ballan wrasse, a phenotypically diverse and extensively used cleaner fish, from 18 locations in Norway and Sweden, and from Galicia, Spain, using 82 SNP markers. We detected two very distinct genetic groups in Scandinavia, northwestern and southeastern. These groups were split by a stretch of sandy beaches in southwest Norway, representing a habitat discontinuity for this rocky shore associated benthic egg‐laying species. Wrasse from Galicia were highly differentiated from all Scandinavian locations, but more similar to northwestern than southeastern locations. Distinct genetic differences were observed between sympatric spotty and plain phenotypes in Galicia, but not in Scandinavia. The mechanisms underlying the geographic patterns between phenotypes are discussed, but not identified. We conclude that extensive aquaculture‐mediated translocation of ballan wrasse from Sweden and southern Norway to western and middle Norway has the potential to mix genetically distinct populations. These results question the sustainability of the current cleaner fish practice.  相似文献   
3.
Current issues in fish welfare   总被引:11,自引:0,他引:11  
Human beings may affect the welfare of fish through fisheries, aquaculture and a number of other activities. There is no agreement on just how to weigh the concern for welfare of fish against the human interests involved, but ethical frameworks exist that suggest how this might be approached. Different definitions of animal welfare focus on an animal's condition, on its subjective experience of that condition and/or on whether it can lead a natural life. These provide different, legitimate, perspectives, but the approach taken in this paper is to focus on welfare as the absence of suffering. An unresolved and controversial issue in discussions about animal welfare is whether non‐human animals exposed to adverse experiences such as physical injury or confinement experience what humans would call suffering. The neocortex, which in humans is an important part of the neural mechanism that generates the subjective experience of suffering, is lacking in fish and non‐mammalian animals, and it has been argued that its absence in fish indicates that fish cannot suffer. A strong alternative view, however, is that complex animals with sophisticated behaviour, such as fish, probably have the capacity for suffering, though this may be different in degree and kind from the human experience of this state. Recent empirical studies support this view and show that painful stimuli are, at least, strongly aversive to fish. Consequently, injury or experience of other harmful conditions is a cause for concern in terms of welfare of individual fish. There is also growing evidence that fish can experience fear‐like states and that they avoid situations in which they have experienced adverse conditions. Human activities that potentially compromise fish welfare include anthropogenic changes to the environment, commercial fisheries, recreational angling, aquaculture, ornamental fish keeping and scientific research. The resulting harm to fish welfare is a cost that must be minimized and weighed against the benefits of the activity concerned. Wild fish naturally experience a variety of adverse conditions, from attack by predators or conspecifics to starvation or exposure to poor environmental conditions. This does not make it acceptable for humans to impose such conditions on fish, but it does suggest that fish will have mechanisms to cope with these conditions and reminds us that pain responses are in some cases adaptive (for example, suppressing feeding when injured). In common with all vertebrates, fish respond to environmental challenges with a series of adaptive neuro‐endocrine adjustments that are collectively termed the stress response. These in turn induce reversible metabolic and behavioural changes that make the fish better able to overcome or avoid the challenge and are undoubtedly beneficial, in the short‐term at least. In contrast, prolonged activation of the stress response is damaging and leads to immuno‐suppression, reduced growth and reproductive dysfunction. Indicators associated with the response to chronic stress (physiological endpoints, disease status and behaviour) provide a potential source of information on the welfare status of a fish. The most reliable assessment of well‐being will be obtained by examining a range of informative measures and statistical techniques are available that enable several such measures to be combined objectively. A growing body of evidence tells us that many human activities can harm fish welfare, but that the effects depend on the species and life‐history stage concerned and are also context‐dependent. For example, in aquaculture, adverse effects related to stocking density may be eliminated if good water quality is maintained. At low densities, bad water quality may be less likely to arise whereas social interactions may cause greater welfare problems. A number of key differences between fish and birds and mammals have important implications for their welfare. Fish do not need to fuel a high body temperature, so the effects of food deprivation on welfare are not so marked. For species that live naturally in large shoals, low rather than high densities may be harmful. On the other hand, fish are in intimate contact with their environment through the huge surface area of their gills, so they are vulnerable to poor water quality and water borne pollutants. Extrapolation between taxa is dangerous and general frameworks for ensuring welfare in other vertebrate animals need to be modified before they can be usefully applied to fish. The scientific study of fish welfare is at an early stage compared with work on other vertebrates and a great deal of what we need to know is yet to be discovered. It is clearly the case that fish, though different from birds and mammals, however, are sophisticated animals, far removed from unfeeling creatures with a 15 s memory of popular misconception. A heightened appreciation of these points in those who exploit fish and in those who seek to protect them would go a long way towards improving fish welfare.  相似文献   
4.
Knowledge on genetic structure is key to understand species connectivity patterns and to define the spatiotemporal scales over which conservation management plans should be designed and implemented. The distribution of genetic diversity (within and among populations) greatly influences species ability to cope and adapt to environmental changes, ultimately determining their long-term resilience to ecological disturbances. Yet, the drivers shaping connectivity and structure in marine fish populations remain elusive, as are the effects of fishing activities on genetic subdivision. To investigate these questions, we conducted a meta-analysis and compiled genetic differentiation data (FST/ΦST estimates) for more than 170 fish species from over 200 published studies globally distributed. We modeled the effects of multiple life-history traits, distance metrics, and methodological factors on observed population differentiation indices and specifically tested whether any signal arising from different exposure to fishing exploitation could be detected. Although the myriad of variables shaping genetic structure makes it challenging to isolate the influence of single drivers, results showed a significant correlation between commercial importance and genetic structure, with widespread lower population differentiation in commercially exploited species. Moreover, models indicate that variables commonly used as proxy for connectivity, such as larval pelagic duration, might be insufficient, and suggest that deep-sea species may disperse further. Overall, these results contribute to the growing body of knowledge on marine genetic connectivity and suggest a potential effect of commercial fisheries on the homogenization of genetic diversity, highlighting the need for additional research focused on dispersal ecology to ensure long-term sustainability of exploited marine species.  相似文献   
5.
Increasingly, local ecological knowledge (LEK) held by groups of people engaging directly with their ecosystems for food production is recognized as a valuable tool for understanding environmental change, as well as for ecosystem management and conservation. However, the acceptance of LEK for resource management has been partly hindered by difficulties in translating local knowledge into a form that can be applied directly to Western scientific endeavors. Anthropology's focus on cultural meaning makes its practitioners uniquely qualified to find common ground between different systems of knowledge. Here, I report the use of ethnographic methods to represent Puerto Rican small-scale fishers' knowledge about tropical coastal habitat connectivity and the composition of species assemblages by underwater habitats. These two topics are of current interest for tropical fishery science and their study can benefit from fishers' extensive experience with the coastal environments on which they depend.  相似文献   
6.
Most of the exploited fish stocks in the North Sea are also used as a food supply by a number of seal species; the same is true for some fish and invertebrate stocks in the Antarctic—although the fisheries there are, at present, much smaller than those in the North Sea. The information needed for a critical assessment of such interactions is reviewed. Using existing techniques it is possible to estimate the quantity and size-classes of each fish or invertebrate species consumed by seals and to compare this with the commercial catch. If fishing mortality is known, these estimates can be used to calculate the level of mortality imposed by the seals. However, a realistic evaluation requires information on the distribution and movements of the fish, the seals' feeding effort, and the fisheries effort in time and space. At present it is difficult or impossible to obtain this information, but recent technological developments in telemetry equipment will soon make it feasible. To assess the economic effects of changes in seal numbers on the fishery, or the ecological effects of changes in fisheries effort on seal populations, requires additional information on the responses of the fishery and the seals to changes in fish abundance, and of the commercial market to changes in the supply of fish.  相似文献   
7.
An outbreak of the nemertean, Carcinonemertes epialti, was observed on Hemigrapsus oregonensis during October, 1982 at Campbell Cove, Bodega Harbor, California. Mean worm intensity (296 worms/crab) was the highest recorded for this nemertean egg predator on H. oregonensis. During the outbreak, male crabs were found to harbor more worms than both non-ovigerous and ovigerous females. Crab egg mortality was substantial; 83% of the ovigerous females experienced 75–100% brood mortality. The seasonal peak in worm abundance coincided with the seasonal low in crab reproduction at this locality. A method for estimating the impact of C. epialti on H. oregonensis natality was developed using crab size and fecundity, and worm prevalence and intensity. For a non-outbreak sampling period, a mean of 5.6% egg mortality was experienced by infested crabs for the period selected. Thus, brood mortality during the outbreak was much greater than that experienced at non-outbreak periods. Heavy fishing pressure on some commercially important crab species has been suggested as a possible factor inducing worm outbreaks and facilitating their continued persistence. These observations suggest that fisheries are not necessarily responsible for the outbreaks of nemerteans on commercially important crab species. However, fishing pressure may still be a sufficient condition to promote nemertean outbreaks.  相似文献   
8.
In 1980 a long-term study of the fishery resources of the San Francisco Bay estuary was initiated in an effort to delineate the importance of freshwater inflow to fish and invertebrate abundance and distribution in the bay. An analysis of the trawl data collected between January 1980 and December 1982 illustrates the influence of the timing and magnitude of freshwater inflows on fish fistribution and abundance in this estuary from the perspective of monthly, seasonal and annual time scales. Normally found in the delta, Suisun Bay and San Pablo Bay during periods of increased salinity, pelagic species moved downstream after the two peak flows studied, while demersal species usually found in Central San Francisco Bay moved upstream. Such upstream movements may be due in part to transport by strong density-driven currents.Timing and magnitude of monthly catches of some species varied on a seasonal cycle coincident with variations of freshwater inflow. Most species, especially the marine species, showed no consistent cycle of monthly catches. In the wet years of 1980 and 1982 the distributions of freshwater, estuarine and anadromous species were extended downstream into San Pablo, Central and South San Francisco Bays and some marine species, including the flatfish, were more abundant in the upstream areas. In the dry year of 1981 when bay salinities were higher, few marine species extended their distributions upstream into San Pablo and Suisun Bays. Jacksmelt was the only fish of the 15 most abundant species with its peak abundance in 1981. Most marine species were more abundant in the San Francisco Bay estuary in the wet years.  相似文献   
9.
10.
J. M. Caffrey 《Hydrobiologia》1996,340(1-3):259-263
Glyphosate is the active ingredient of the broad-spectrum, translocated herbicide Roundup. Glyphosate is cleared for safe use in or near watercourses, being rated virtually non-toxic by the World Health Organisation. Trials in and alongside Irish fishery watercourses first commenced in 1989 and are continuing to date. The aim of this work is to evaluate the product's efficacy in clearing nuisance reed species in recreational fisheries. The longevity of control and impact on the habitat and its fauna is also investigated. Trials in canal fisheries have demonstrated the capacity of glyphosate to remove obstructive stands of reeds (mainly Schoenoplectus lacustris, Glyceria maxima, Phragmites australis, Sparganium erectum and Typha latifolia), so creating reed-free areas and swims for anglers. These swims remained open for three years following a single application. In 1992 a trial over a 3 km length of the River Boyne, a renowned salmonid fishery, was undertaken. The results clearly demonstrated the ability of glyphosate to provide long-term control of dense (354 shoots m–2) Schoenoplectus infestations in a large watercourse. In the year following, less than one shoot per m2 was present in the channel. In 1994 a small increase in density (7.6 shoots m–2 was recorded, so enabling unobstructed angling in a stretch of river that had been virtually unfishable for years. Trout (Salmo trutta L.) and salmon (Salmo salar L.) also used the newly exposed gravels for spawning in the winter of 1993, thereby improving fish recruitment and production in the fishery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号