首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   30篇
  国内免费   6篇
  2023年   5篇
  2022年   12篇
  2021年   12篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2017年   13篇
  2016年   18篇
  2015年   20篇
  2014年   17篇
  2013年   42篇
  2012年   15篇
  2011年   14篇
  2010年   18篇
  2009年   11篇
  2008年   15篇
  2007年   14篇
  2006年   17篇
  2005年   17篇
  2004年   17篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
排序方式: 共有317条查询结果,搜索用时 27 毫秒
1.
The use of force probes to induce unfolding and refolding of single molecules through the application of mechanical tension, known as single-molecule force spectroscopy (SMFS), has proven to be a powerful tool for studying the dynamics of protein folding. Here we provide an overview of what has been learned about protein folding using SMFS, from small, single-domain proteins to large, multi-domain proteins. We highlight the ability of SMFS to measure the energy landscapes underlying folding, to map complex pathways for native and non-native folding, to probe the mechanisms of chaperones that assist with native folding, to elucidate the effects of the ribosome on co-translational folding, and to monitor the folding of membrane proteins.  相似文献   
2.
All neurodegenerative diseases feature aggregates, which usually contain disease‐specific diagnostic proteins; non‐protein constituents, however, have rarely been explored. Aggregates from SY5Y‐APPSw neuroblastoma, a cell model of familial Alzheimer''s disease, were crosslinked and sequences of linked peptides identified. We constructed a normalized “contactome” comprising 11 subnetworks, centered on 24 high‐connectivity hubs. Remarkably, all 24 are nucleic acid‐binding proteins. This led us to isolate and sequence RNA and DNA from Alzheimer''s and control aggregates. RNA fragments were mapped to the human genome by RNA‐seq and DNA by ChIP‐seq. Nearly all aggregate RNA sequences mapped to specific genes, whereas DNA fragments were predominantly intergenic. These nucleic acid mappings are all significantly nonrandom, making an artifactual origin extremely unlikely. RNA (mostly cytoplasmic) exceeded DNA (chiefly nuclear) by twofold to fivefold. RNA fragments recovered from AD tissue were ~1.5‐to 2.5‐fold more abundant than those recovered from control tissue, similar to the increase in protein. Aggregate abundances of specific RNA sequences were strikingly differential between cultured SY5Y‐APPSw glioblastoma cells expressing APOE3 vs. APOE4, consistent with APOE4 competition for E‐box/CLEAR motifs. We identified many G‐quadruplex and viral sequences within RNA and DNA of aggregates, suggesting that sequestration of viral genomes may have driven the evolution of disordered nucleic acid‐binding proteins. After RNA‐interference knockdown of the translational‐procession factor EEF2 to suppress translation in SY5Y‐APPSw cells, the RNA content of aggregates declined by >90%, while reducing protein content by only 30% and altering DNA content by ≤10%. This implies that cotranslational misfolding of nascent proteins may ensnare polysomes into aggregates, accounting for most of their RNA content.  相似文献   
3.
Protein misfolding has traditionally been linked to the pathogenesis of various neurodegenerative diseases. However, emerging evidence from various laboratories, including ours, suggests that protein misfolding may also play a fundamental role in some malignancies, particularly those caused by fusion oncoprotein generated from chromosomal translocation. Promyelocytic leukemia (PML) fused to the retinoic acid receptor (RAR) is a fusion oncoprotein linked to the transformation of acute promyelocytic leukemia (APL), and is not only a misfolded protein itself, but also promotes misfolding of nuclear receptor corepressor (N-CoR) protein, a corepressor essential for the growth-suppressive function of several tumor-suppressor proteins. PML–RAR promotes misfolding of N-CoR by inducing aberrant post-translational modification, which destabilizes its core and promotes instability. Misfolded N-CoR, thus, contributes to differentiation arrest and survival of APL cells through loss-of-function and aberrant gain-of-function properties. Therapeutic restoration of N-CoR conformation and function with conformation-modifying agents not only releases this differentiation arrest but also sensitizes APL cells to programmed cell death. These findings illustrate the potential of the misfolded N-CoR protein as a conformation-based drugable molecular target for APL, and highlights the promise of various conformation-modifying agents as novel therapeutics for APL. Protein conformational rearrangement, resulting from an inherited or acquired genetic alteration, could be a common pathological phenomenon contributing to transformation in different types of leukemias and solid tumors and, therefore, could serve as a common ground for designing a unifying diagnostic as well as therapeutic approach for a widely diverse disease such as cancer. To that end, APL could serve as a model for the development of a novel conformation-based therapeutic approach for other malignant diseases.  相似文献   
4.
The structural conversion of the prion protein PrP into a transmissible, misfolded form is the central element of prion disease, yet there is little consensus as to how it occurs. Key aspects of conversion into the diseased state remain unsettled, from details about the earliest stages of misfolding such as the involvement of partially- or fully-unfolded intermediates to the structure of the infectious state. Part of the difficulty in understanding the structural conversion arises from the complexity of the underlying energy landscapes. Single molecule methods provide a powerful tool for probing complex folding pathways as in prion misfolding, because they allow rare and transient events to be observed directly. We discuss recent work applying single-molecule probes to study misfolding in prion proteins, and what it has revealed about the folding dynamics of PrP that may underlie its unique behavior. We also discuss single-molecule studies probing the interactions that stabilize non-native structures within aggregates, pointing the way to future work that may help identify the microscopic events triggering pathogenic conversion. Although single-molecule approaches to misfolding are relatively young, they have a promising future in prion science.  相似文献   
5.
《朊病毒》2013,7(4):266-277
ABSTRACT

Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.  相似文献   
6.
《朊病毒》2013,7(5):339-346
Abstract

Prion-like proteins can undergo conformational rearrangements from an intrinsically disordered to a highly ordered amyloid state. This ability to change conformation is encoded in distinctive domains, termed prion domains (PrDs). Previous work suggests that PrDs change conformation to affect protein function and create phenotypic diversity. More recent work shows that PrDs can also undergo many weak interactions when disordered, allowing them to organize the intracellular space into dynamic compartments. However, mutations within PrDs and altered aggregation properties have also been linked to age-related diseases in humans. Thus, the physiological role of prion-like proteins, the mechanisms regulating their conformational promiscuity and the links to disease are still unclear. Here, we summarize recent work with prion-like proteins in Dictyostelium discoideum. This work was motivated by the finding that D. discoideum has the highest content of prion-like proteins of all organisms investigated to date. Surprisingly, we find that endogenous and exogenous prion-like proteins remain soluble in D. discoideum and do not misfold and aggregate. We provide evidence that this is due to specific adaptations in the protein quality control machinery, which may allow D. discoideum to tolerate its highly aggregation-prone proteome. We predict that D. discoideum will be an important model to study the function of prion-like proteins and their mechanistic links to disease.  相似文献   
7.
《朊病毒》2013,7(2):116-120
Although intensively researched, the fundamental mechanism of protein misfolding that leads to protein aggregation and associated diseases remains somewhat enigmatic. The failure of a protein to correctly fold de novo or to remain correctly folded can have profound consequences on a living system especially when the cellular quality control processes fail to eliminate the rogue proteins. Over 20 different human diseases have now been designated as ‘conformational diseases’ and include neurodegenerative diseases such as Alzheimer’s disease (AD), Huntington’s disease (HD) and Creutzfeldt Jakob disease (CJD) that are becoming increasingly prevalent in an ageing human population. Such diseases are usually characterised by the deposition of specific misfolded proteins as amyloid fibrils and hence are often referred to as the amyloidoses.  相似文献   
8.
《朊病毒》2013,7(4):359-363
Prion disease research has opened up the “black-box” of neurodegeneration, defining a key role for protein misfolding wherein a predominantly alpha-helical precursor protein, PrPC, is converted to a disease-associated, β-sheet enriched isoform called PrPSc. In Alzheimer disease (AD) the Aβ peptide derived from the β-amyloid precuror protein APP folds in β-sheet amyloid. Early thoughts along the lines of overlap may have been on target,1 but were eclipsed by a simultaneous (but now anachronistic) controversy over the role of PrPSc in prion diseases.2,3 Nonetheless, as prion diseases such as Creutzfeldt-Jakob Disease (CJD) are themselves rare and can include an overt infectious mode of transmission, and as familial prion diseases and familial AD involve different genes, an observer might reasonably have concluded that prion research could occasionally catalyze ideas in AD, but could never provide concrete overlaps at the mechanistic level. Surprisingly, albeit a decade or three down the road, several prion/AD commonalities can be found within the contemporary literature. One important prion/AD overlap concerns seeded spread of Aβ aggregates by intracerebral inoculation much like prions,4 and, with a neuron-to-neuron ‘spreading’ also reported for pathologic forms of other misfolded proteins, Tau5,6 and α-synuclein in the case of Parkinson Disease.7,8 The concept of seeded spread has been discussed extensively elsewhere, sometimes under the rubric of “prionoids”9, and lies outside the scope of this particular review where we will focus upon PrPC. From this point the story can now be subdivided into four strands of investigation: (1) pathologic effects of Aβ can be mediated by binding to PrPC,10 (2) the positioning of endoproteolytic processing events of APP by pathologic (β-cleavage + γ-cleavage) and non-pathologic (α-cleavage + γ-cleavage) secretase pathways is paralleled by seemingly analogous α- and β-like cleavage of PrPC (Fig. 1) (3) similar lipid raft environments for PrPC and APP processing machinery,11-13 and perhaps in consequence, overlaps in repertoire of the PrPC and APP protein interactors (“interactomes”),14,15 and (4) rare kindreds with mixed AD and prion pathologies.16 Here we discuss confounds, consensus and conflict associated with parameters that apply to these experimental settings.  相似文献   
9.
Despite high sequence identity among mammalian prion proteins (PrPs), mammals have varying rates of susceptibility to prion disease resulting in a so-called species barrier. The species barrier follows no clear pattern, with closely related species or similar sequences being no more likely to infect each other, and remains an unresolved enigma. Variation of the conformationally flexible regions may alter the thermodynamics of the conformational change, commonly referred to as the conformational conversion, which occurs in the pathogenic process of the mammalian prion protein. A conformational ensemble scenario is supported by the species barrier in prion disease and evidence that there are strains of pathogenic prion with different conformations within species. To study how conformational flexibility has evolved in the prion protein, an investigation was undertaken on the evolutionary dynamics of structurally disordered regions in the mammalian prion protein, non-mammalian prion protein that is not vulnerable to prion disease, and remote homologs Doppel and Shadoo. Structural disorder prediction analyzed in an evolutionary context revealed that the occurrence of increased or altered conformational flexibility in mammalian PrPs coincides with key events among PrP, Doppel, and Shadoo. Comparatively rapid evolutionary dynamics of conformational flexibility in the prion protein suggest that the species barrier is not a static phenomenon. A small number of amino acid substitutions can repopulate the conformational ensemble and have a disproportionately large effect on pathogenesis.  相似文献   
10.
Traditionally biased usage of synonymous codons renders selective advantage to proteins expressed at high levels with a few exceptions like in Escherichia coli. Proteome-wide characteristics indicative of trends in highly expressed proteins of E. coli is analyzed in this communication. Implications for the nature of interactions performed by these two groups of highly expressed proteins are discussed here. The group of highly expressed proteins having optimized codon usage through employment of most abundant tRNAs is already shielded from misfolding by their improved error-prone translational machinery. Our data also provide evidence for mechanism by which a significant proportion of highly expressed proteins with high intrinsic disorder evade degradation and successfully carry out their function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号