首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   16篇
  2023年   6篇
  2022年   1篇
  2021年   4篇
  2020年   7篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2012年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2004年   3篇
  2001年   1篇
  1997年   1篇
排序方式: 共有59条查询结果,搜索用时 250 毫秒
1.
Large carnivores can exert top–down effects in ecosystems, but the size of these effects are largely unknown. Empirical investigation on the importance of large carnivores for ecosystem structure and functioning presents a number of challenges due to the large spatio-temporal scale and the complexity of such dynamics. Here, we applied a mechanistic global ecosystem model to investigate the influence of large-carnivore removal from undisturbed ecosystems. First, we simulated large-carnivore removal on the global scale to inspect the geographic pattern of top–down control and to disentangle the functional role of large carnivores in top–down control in different environmental contexts. Second, we conducted four small-scale ecosystem simulation experiments to understand direct and indirect changes in food-web structure under different environmental conditions. We found that the removal of top–down control exerted by large carnivores (> 21 kg) can trigger large trophic cascades, leading to an overall decrease in autotroph biomass globally. Furthermore, the loss of large carnivores resulted in an increase of mesopredators. The magnitude of these changes was positively related to primary productivity (NPP), in line with the ‘exploitation ecosystem hypothesis’. In addition, we found that seasonality in NPP dampened the magnitude of change following the removal of large carnivores. Our results reinforce the idea that large carnivores play a fundamental role in shaping ecosystems, and further declines and extinctions can trigger substantial ecosystem responses. Our findings also support previous studies suggesting that natural ecosystem dynamics have been severely modified and are still changing as a result of the widespread decline and extinction of large carnivores.  相似文献   
2.
3.
Species that inhabited Europe during the Late Quaternary were impacted by temperature changes and early humans, resulting in the disappearance of half of the European large mammals. However, quantifying the relative importance that each factor had in the extinction risk of species has been challenging, mostly due to the spatio‐temporal biases of fossil records, which complicate the calibration of realistic and accurate ecological niche modeling. Here, we overcome this problem by using ecotypes, and not real species, to run our models. We created 40 ecotypes with different temperature requirements (mean temperature from ?20 °C to 25 °C and temperature range from 10 °C to 40 °C) and used them to quantify the effect of climate change and human impact. Our results show that cold‐adapted ecotypes would have been highly affected by past temperature changes in Europe, whereas temperate and warm‐adapted ecotypes would have been positively affected by temperature change. Human impact affected all ecotypes negatively, and temperate ecotypes suffered the greatest impacts. Based on these results, the extinction of cold‐adapted species like Mammuthus primigenius may be related to temperature change, while the extinction of temperate species, like Crocuta crocuta, may be related to human impact. Our results suggest that temperature change and human impact affected different ecotypes in distinct ways, and that the interaction of both impacts may have shaped species extinctions in Europe.  相似文献   
4.
Africa is unique among the continents in having maintained an extraordinarily diverse and prolific megafauna spanning the Pleistocene-Holocene epochs. Little is known about the historical dynamics of this community and even less about the reasons for its unique persistence to modern times. We sequenced complete mitochondrial genomes from 43 Cape buffalo (Syncerus caffer caffer) to infer the demographic history of this large mammal. A combination of Bayesian skyline plots, simulations and Approximate Bayesian Computation (ABC) were used to distinguish population size dynamics from the confounding effect of population structure and identify the most probable demographic scenario. Our analyses revealed a late Pleistocene expansion phase concurrent with the human expansion between 80 000 and 10 000 years ago, refuting an adverse ecological effect of Palaeolithic humans on this quarry species, but also showed that the buffalo subsequently declined during the Holocene. The distinct two-phased dynamic inferred here suggests that a major ecological transition occurred in the Holocene. The timing of this transition coincides with the onset of drier conditions throughout tropical Africa following the Holocene Optimum (~9000-5000 years ago), but also with the explosive growth in human population size associated with the transition from the Palaeolithic to the Neolithic cultural stage. We evaluate each of these possible causal factors and their potential impact on the African megafauna, providing the first systematic assessment of megafauna dynamics on the only continent where large mammals remain abundant.  相似文献   
5.
In order to understand and moderate the effects of the accelerating rate of global environmental change land managers and ecologists must not only think beyond their local environment but also put their problems into a historical context. It is intuitively obvious that historians should be natural allies of ecologists and land managers as they struggle to maintain biodiversity and landscape health. Indeed, ‘environmental history’ is an emerging field where the previously disparate intellectual traditions of ecology and history intersect to create a new and fundamentally interdisciplinary field of inquiry. Environmental history is rapidly becoming an important field displacing many older environmentally focused academic disciplines as well as capturing the public imagination. By drawing on Australian experience I explore the role of ‘environmental history’ in managing biodiversity. First I consider some of the similarities and differences of the ecological and historical approaches to the history of the environment. Then I review two central questions in Australian environment history: landscape‐scale changes in woody vegetation cover since European settlement and the extinction of the marsupials in both historical and pre‐historical time. These case studies demonstrate that environmental historians can reach conflicting interpretations despite using essentially the same data. The popular success of some environmental histories hinges on the fact that they narrate a compelling story concerning human relationships and human value judgements about landscape change. Ecologists must learn to harness the power of environmental history narratives to bolster land management practices designed to conserve biological heritage. They can do this by using various currently popular environmental histories as a point of departure for future research, for instance by testing the veracity of competing interpretations of landscape‐scale change in woody vegetation cover. They also need to learn how to write parables that communicate their research findings to land managers and the general public. However, no matter how sociologically or psychologically satisfying a particular environmental historical narrative might be, it must be willing to be superseded with new stories that incorporate the latest research discoveries and that reflects changing social values of nature. It is contrary to a rational and publicly acceptable approach to land management to read a particular story as revealing the absolute truth.  相似文献   
6.
The ongoing down‐sizing of the global mammal communities is assumed to have subsequent effects on mutualistic species communities. Dung beetles co‐evolved with large‐sized animals since millennia and depend on the megafauna feces of an appropriate size. Mammal community down‐sizing as a result of past and ongoing megafauna losses is therefore likely to result in a down‐sizing of dung beetle communities. However, empirical evidence for this co‐down‐sizing is lacking especially on larger spatial scales and over extended periods of time. Here, we show a significant down‐sizing of European dung beetle assemblages over the last ~53 000 years by relating Quaternary fossil records with trait information on body size of beetles. This significant down‐sizing of dung beetle communities was thereby not linear, but characterized by a weak decrease until the early Holocene but a strong acceleration in the recent pre‐history, from 6–7000 years BP onwards. This acceleration of down‐sizing coincides with the completion of the Quaternary megafauna extinction and the start of major shifts in human agricultural land‐use. In contrast, assemblage mean body size of non‐coprophagous scarabids as well as ground beetles – two groups of beetles with no or weak relations to megafauna – was observed to increase towards the present with an acceleration of body size increase coinciding with the onset of late‐glacial warming (14 200 years BP). In summary, the observed late‐Quaternary down‐sizing of European dung beetle communities is consistent with an effect of pre‐historic megafauna losses, and not with the coincident general warming. Ongoing down‐sizing of mammal communities is therefore likely to result in further down‐sizing of dung beetle assemblages, with potential effects on their important role for nutrient cycling and secondary seed dispersal in natural and extensive agro‐ecosystems. Future nature management initiatives could halt or even reverse this functional diversity loss via effective protection or restoration of megafauna communities.  相似文献   
7.
Large frugivores play an important role as seed dispersers and their extinction may affect plant regeneration. The consequences of such extinctions depend on the likelihood of other species being functionally redundant and on how post‐dispersal events are affected. We assess the functional redundancy of two seed dispersers of the Atlantic Forest, the muriqui (Brachyteles arachnoides) and the tapir (Tapirus terrestris) through the comparison of their seed dispersal quality, taking into account post‐dispersal events. We compare tapirs and muriquis for: (1) the dung beetle community associated with their feces; (2) the seed burial probability and burial depth by dung beetles; and (3) the seed mortality due to predators or other causes according to burial depth. We determine how seed burial affects seed dispersal effectiveness (SDE) and compare the dispersal quality of four plant species dispersed by these frugivores. Muriqui feces attract 16‐fold more dung beetles per gram of fecal matter and seeds experience 10.5‐fold more burial than seeds in tapir feces. In both feces types, seed mortality due to predation decreases with burial depth but seed mortality due to other causes increases. Total seed mortality differ within plant species according to the primary disperser. Therefore, the effect of seed burial on SDE varies according to the plant species, burial depth, and primary disperser. As tapirs and muriquis differently affect the seed fate, they are not functionally redundant. Since the effect of the primary disperser persists into the post‐dispersal events, we should consider the cascading effects of these processes when assessing functional redundancy.  相似文献   
8.
The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132 000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial–interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary.  相似文献   
9.
Human–megafauna interaction in the Americas has great scientific and ethical interest because of its implications on Pleistocene extinction. The Arroyo del Vizcaíno site near Sauce, Uruguay has already yielded over 1000 bones belonging to at least 27 individuals, mostly of the giant sloth Lestodon. The assemblage shows some taphonomic features suggestive of human presence, such as a mortality profile dominated by prime adults and little evidence of major fluvial transport. In addition, several bones present deep, asymmetrical, microstriated, sharp and shouldered marks similar to those produced by human stone tools. A few possible lithic elements have also been collected, one of which has the shape of a scraper and micropolish consistent with usage on dry hide. However, the radiocarbon age of the site is unexpectedly old (between 27 and 30 thousand years ago), and thus may be important for understanding the timing of the peopling of America.  相似文献   
10.
Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep‐sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal‐to‐century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091–2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006–2015). Our projections use multi‐model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep‐water biodiversity hotspots known around the world, including canyons, seamounts, and cold‐water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号