首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65998篇
  免费   4706篇
  国内免费   3755篇
  2024年   56篇
  2023年   785篇
  2022年   936篇
  2021年   1594篇
  2020年   1516篇
  2019年   1954篇
  2018年   2024篇
  2017年   1462篇
  2016年   1665篇
  2015年   2239篇
  2014年   3310篇
  2013年   4765篇
  2012年   2361篇
  2011年   3291篇
  2010年   2666篇
  2009年   3415篇
  2008年   3640篇
  2007年   3761篇
  2006年   3481篇
  2005年   3383篇
  2004年   2949篇
  2003年   2617篇
  2002年   2453篇
  2001年   1687篇
  2000年   1378篇
  1999年   1481篇
  1998年   1512篇
  1997年   1272篇
  1996年   952篇
  1995年   1158篇
  1994年   1066篇
  1993年   915篇
  1992年   850篇
  1991年   630篇
  1990年   516篇
  1989年   497篇
  1988年   499篇
  1987年   449篇
  1986年   378篇
  1985年   437篇
  1984年   596篇
  1983年   402篇
  1982年   405篇
  1981年   263篇
  1980年   250篇
  1979年   190篇
  1978年   103篇
  1977年   59篇
  1976年   64篇
  1975年   42篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
《Developmental cell》2021,56(21):2952-2965.e9
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
2.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
3.
Abstract

The hepatitis C virus (HCV) encodes the p7 protein that oligomerizes to form an ion channel. The 63 amino acid long p7 monomer is an integral membrane protein predominantly found in the endoplasmic reticulum (ER). Although it is currently unknown whether p7 is incorporated into secreted virions, its presence is crucial for the release of infectious virus. The molecular and biophysical mechanism employed by the p7 ion channel is largely unknown, but in vivo it is likely to be embedded in membranes undergoing changes in lipid composition. In this study we analyze the influence of the lipid environment on p7 ion channel structure and function using electrophysiology and synchrotron radiation circular dichroism (SRCD) spectroscopy. We incorporated chemically synthesized p7 polypeptides into artificial planar membranes of various lipid compositions. A lipid bilayer composition comprising phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (4:1 PC:PE) led to burst-like patterns in the channel recordings with channel openings lasting up to 0.5 s. The reverse ratio of PC:PE (1:4) gave rise to individual channels continuously opening for up to 8 s. SRCD spectroscopy of p7 embedded into liposomes of corresponding lipid compositions suggests there is a structural effect of the lipid composition on the p7 protein.  相似文献   
4.
Nitrogen dioxide less than 100 ppm in air induced lipid peroxidation of liposome composed of l-palmitoyl-2-arachidonylphosphatidylcholine as assessed by thiobarbituric acid reactivity. The nitrogen dioxide-induced lipid peroxidation was enhanced by cysteine, glutathione and bovine serum albumin. While the activity of nitrogen dioxide in air to induce single strand breaks of supercoiled plasmid DNA was low, the breaking was remarkably enhanced by cysteine, glutathione and bovine serum albumin. ESR spin trapping using 5,5-dimethyl-1-pyrroline N-oxide showed that certain strong oxidant(s) were generated by interaction of nitrogen dioxide and cysteine. The spin trapping using 3,5-dibromo-4-nitrosobenzene-sulfonate suggested that sulfur-containing radicals were generated by interaction of nitrogen dioxide and cysteine or glutathione. Hence, certain sulfur-containing radicals generated by the interaction which could effectively induce lipid peroxidation and DNA strand breaks.  相似文献   
5.
The vitamin D binding protein (Gc) and posttransferrin-2 (Ptf-2) phenotypes have been determined in a number of Belgian cattle breeds. A very slow migrating variant of the Gc protein — Gc C — has been found in White and Red East Flemish breed. This variant was absent from the other breeds studied. This slow variant was identified as a vitamin D binding protein by autoradiography. The Gc C protein was shown to be controlled by a codominant autosomal allele Gc C at the Gclocus. The Gc C protein is probably identical with a fraction previously described in buffalo and an Italian cattle breed. The allele frequencies for the Gc and Pft-2 systems are reported for several Belgian breeds of cattle.  相似文献   
6.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
7.
The ability to metabolically label proteins with 35S-methionine is critical for the analysis of protein synthesis and turnover. Despite the importance of this approach, however, efficient labeling of proteins in vivo is often limited by a low number of available methionine residues, or by deleterious side-effects associated with protein overexpression. To overcome these limitations, we have created a methionine-rich variant of the widely used HA tag, called HAM, for use with ectopically expressed proteins. Here we describe the development of a series of vectors, and corresponding antisera, for the expression and detection of HAM-tagged proteins in mammalian cells. We show that the HAM tag dramatically improves the sensitivity of 35S-methionine labeling, and permits the analysis of Myc oncoprotein turnover even when HAM-tagged Myc is expressed at levels comparable to that of the endogenous protein. Because of the improved sensitivity provided by the HAM tag, the vectors and antisera described here should be useful for the analysis of protein synthesis and destruction at physiological levels of protein expression.  相似文献   
8.
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.  相似文献   
9.
The biochemical responses of Holcus lanatus L. to copper and arsenate exposure were investigated in arsenate‐tolerant and ‐non‐tolerant plants from uncontaminated and arsenic/copper‐contaminated sites. Increases in lipid peroxidation, superoxide dismutase (SOD) activity and phytochelatin (PC) production were correlated with increasing copper and arsenate exposure. In addition, significant differences in biochemical responses were observed between arsenate‐tolerant and ‐non‐tolerant plants. Copper and arsenate exposure led to the production of reactive oxygen species, resulting in significant lipid peroxidation in non‐tolerant plants. However, SOD activity was suppressed upon metal exposure, possibly due to interference with metallo‐enzymes. It was concluded that in non‐tolerant plants, rapid arsenate influx resulted in PC production, glutathione depletion and lipid peroxidation. This process would also occur in tolerant plants, but by decreasing the rate of influx, they were able to maintain their constitutive functions, detoxify the metals though PC production and quench reactive oxygen species by SOD activity.  相似文献   
10.
Conjugational transfer of pLS20 in Bacillus subtilis Marburg 168 is restricted by the BsuM restriction-modification system. Restriction efficiency was measured using pLS20 derivatives possessing various numbers of XhoI sites, which are known to be recognized by BsuM. An increase in XhoI sites clearly reduced the conjugational efficiency of pLS20 as compared with that of pUB110 plasmid lacking XhoI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号