首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2009年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
Summary Repeated grafting of 0.2-cm shoot tips from fruiting-age trees ofCitrus reticulata Blanco ‘Ponkan’ mandarin andC. sinensis Osbeck ‘Liu Tseng’ sweet orange onto freshly germinated ‘Troyer’ citrange [Poncirus trifoliata (L.) Raf. X.C. sinensis Osbeck] seedlings in vitro resulted in progressive restoration of rooting competence and vigor of regenerated roots and shoots. The restored traits were retained through the course of the investigation and suggested a phase reversal phenomenon.  相似文献   
2.
A model has been developed that can be used to determine the phases of sensitivity to photoperiod for seedlings subjected to reciprocal transfers at regular intervals between long (LD) and short day (SD) conditions. The novel feature of this approach is that it enables the simultaneous analysis of the time to flower and number of leaves below the inflorescence. A range of antirrhinum cultivars were grown, all of which were shown to be quantitative long-day plants. Seedlings were effectively insensitive to photoperiod when very young (juvenile). However, after the end of the juvenile phase, SD delayed flowering and increased the number of leaves below the inflorescence. Plants transferred from LD to SD showed a sudden hastening of flowering and a decrease in leaf number once sufficient LD had been received for flower commitment. Photoperiod had little effect on the rate of flower development. The analysis clearly identified major cultivar differences in the length of the juvenile phase and the photoperiod-sensitive inductive phase in both LD and SD.  相似文献   
3.
The present paper reports results of experiments to develop a system for studying adventitious root initiation in cuttings derived from seedlings. Hypocotyl cuttings of 2-week-old eastern white pine (Pinus strobus L.) seedlings were treated for 5 min with 0, 100, 200, 300, 400, 500 or 600 mg l?1 (0, 0.54, 1.07, 1.61, 2.15, 2.69 or 3.22 mM) 1-naphthaleneacetic acid (NAA) to determine the effect on root initiation. The number of root primordia per cutting was correlated with NAA concentration and the square of NAA concentration. Thus, the number increased from less than one per cutting in the 0 NAA treatment to approximately 40 per cutting at 300 mg l-1 NAA, above which no substantial further increase was observed. The larger number of root primordia formed in response to increasing concentrations of NAA was due to the formation of primordia over a larger proportion of the hypocotyls. Histological analysis of the timing of root primordium formation in hypocotyl cuttings revealed three discernible stages. Progression through these stages was relatively synchronous among NAA-treated hypocotyl cuttings and within a given cutting, but variation was observed in the portion of different cuttings undergoing root formation. Control-treated hypocotyl cuttings formed root primordia at lower frequencies and more slowly than NAA-treated cuttings, with fewer primordia per cutting. Epicotyl cuttings from 11-week-old seedlings also formed adventitious roots, but more slowly than hypocotyl cuttings. NAA treatment of epicotyl cuttings caused more rapid root initiation and also affected the origin of adventitious roots in comparison with nontreated cuttings. NAA-treated epicotyl cuttings formed roots in a manner analogous to that of the hypocotyl cuttings, directly from preformed vascular tissue, while control-treated epicotyl cuttings first formed a wound or callus tissue and subsequently differentiated root primordia within that tissue. This system of inducing adventitious roots in pine stem cuttings lends itself to studying the molecular and biochemical steps that occur during root initiation and development.  相似文献   
4.
5.
Because children's ability to support themselves falls below their consumption, human young are subsidized by others throughout much of their growth and development. Mothers, however, who often have multiple dependents of different ages, are faced with an allocation problem (Fig. 1). This has led to important debate about the evolution of a long period dependence and the development of nonmaternal strategies to provision young. This article focuses on the critical role that children themselves play. Because the human subsistence niche incorporates a broad diversity of resources that require variable procurement and processing costs, dependent children can also be important producers, furthering both a need and an opportunity for cooperative breeding.  相似文献   
6.
A procedure has been developed forin vitro propagation ofVitis vinifera Pinot noir from lateral-bud cuttings under high CO2 concentration (1200 µmol mol–1). Because of inhibition of rooting by CO2, this procedure requires a rooting pre-culture of explants on medium with sucrose before the CO2-enriched culture on sucrose-free medium. Shoot growth was enhanced by CO2 enrichment as a result of both a higher rate of leaf production and greater internode elongation. Leaf expansion and tendril growth were promoted and better rooting was obtained. The more significant effect of CO2 enrichment was to promote adult morphology with, in particular, the tendril pattern. Thus, for the first time, grapevine plants have been producedin vitro without typical juvenile characteristics. CO2 enrichment appears to be an interesting process to improve thein vitro propagation of grapevines.  相似文献   
7.
Flower bud initiation in seedlings and vegetatively propagated plants of Salix pentandra from different locations has been studied under controlled conditions. In mature plants flower bud formation was induced by 2-chloroethyltrimethylammoniumchloride (CCC) and by short day treatment. The effect of CCC was antagonized by GA3. The critical photoperiod for flower bud formation was about 18 h for a southern clone (from 49°48'N), but cuttings of a northern ecotype (from 69°39'N) formed flower buds even at 24 h photoperiod. Generally, flower bud formation occurred simultaneously with apical growth cessation. However, apical growth cessation was not a prerequisite for floral initiation and flower buds were also found in elongating plants. Seedlings up to 60 days old did not form flower buds in growth chamber studies. The length of the juvenile phase has not been studied in detail, but cuttings taken from seedlings approximately 20 cm high and 60 days old were able to develop flower buds when treated with CCC. A gradual transition from the juvenile to the mature phase was obtained by repeated pruning of seedlings grown at 18°C and 24 h photoperiod.  相似文献   
8.
9.

Background and Aims

The time at which plants are transferred to floral inductive conditions affects the onset of flowering and plant morphology, due to juvenility. Plants of Brunonia australis and Calandrinia sp. were used to investigate whether Australian native ephemeral species show a distinct juvenile phase that can be extended to increase vegetative growth and flowering.

Methods

The juvenile phase was quantified by transferring seedlings from less inductive (short day and 30/20°C) to inductive (vernalization or long day) conditions at six different plant ages ranging from 4 to 35 d after seed germination. An increase in days to first visible floral bud and leaf number were used to signify the end of juvenility.

Key Results

Brunonia australis was receptive to floral inductive long day conditions about 18–22 d after seed germination, whereas plants aged 4–35 d appeared vernalization sensitive. Overall, transferring plants of B. australis from short to long day conditions reduced the time to anthesis compared with vernalization or constant short day conditions. Calandrinia sp. showed a facultative requirement for vernalization and an insensitive phase was not detected. Floral bud and branch production increased favourably as plant age at time of transfer to inductive conditions increased. Younger plants showed the shortest crop production time.

Conclusions

Both species can perceive the vernalization floral stimulus from a very young age, whereas the photoperiodic stimulus is perceived by B. australis after a period of vegetative growth. However, extending the juvenile phase can promote foliage development and enhance flower production of both species.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号