首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   22篇
  国内免费   11篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2016年   12篇
  2015年   7篇
  2014年   9篇
  2013年   20篇
  2012年   10篇
  2011年   6篇
  2010年   7篇
  2009年   18篇
  2008年   19篇
  2007年   21篇
  2006年   18篇
  2005年   16篇
  2004年   17篇
  2003年   27篇
  2002年   13篇
  2001年   30篇
  2000年   14篇
  1999年   23篇
  1998年   23篇
  1997年   28篇
  1996年   20篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   8篇
  1991年   10篇
  1990年   9篇
  1989年   9篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
排序方式: 共有484条查询结果,搜索用时 453 毫秒
1.
A variety of lamps are used in animal husbandry, but data with respect to ultraviolet irradiances from these lamps, which may be important for alleviating or preventing metabolic bone disease, are generally unavailable. This paper reports irradiances from representative lamps as well as transmission and reflective properties of various materials.  相似文献   
2.
3.
Summary Gossypium hirsutum L. var. Delta Pine 61 was cultivated in controlled-environment chambers at 1000–1100 mol photosynthetically active photons m-2 s-1 (medium photon flux density) and at 1800–2000 mol photons m-2 s-1 (high photon flux density), respectively. Air temperatures ranged from 20° to 34°C during 12-h light periods, whereas during dark periods temperature was 25° C in all experiments. As the leaf temperature decreased from about 33° to 27° C, marked reductions in dry matter production, leaf chlorophyll content and photosynthetic capacity occurred in plants growing under high light conditions, to values far below those in plants growing at 27° C and medium photon flux densities. The results show that slightly suboptimum temperatures, well above the so-called chilling range (0–12° C), greatly reduce dry matter production in cotton when combined with high photon flux densities equivalent to full sunlight.Abbreviations DW dry weight - F v variable fluorescence yield - F M maximum fluorescence yield - PFD photon flux density (400–700 nm)  相似文献   
4.
5.
6.
The seeds (achenes) of Laportea bulbifera require a chilling to break their dormancy and are negatively photoblastic. Their germination is inhibited by both continuous blue light and continuous or prolonged far-red radiation. The germination of de-coated seeds, prepared by removing the fruit coats, however, was strongly inhibited by continuous far-red, but not by continuous blue light. Photoreversible germination by a brief irradiation with red light occurred when the chilled seeds were exposed to prolonged far-red light. These results suggest that far-red light may regulate the germination of L. bulbifera seeds through the phytochrome system which exists in the regions other than fruit coats and that the blue light reaction may be governed by other photoreceptor system(s).  相似文献   
7.
Photosynthetic characteristics at high measurement irradiance were analyzed for single leaves of two C3 and one C4 species grown under twenty one combinations of irradiance level, irradiance duration, and air temperature in order to test the idea that photosynthetic characteristies developed by leaves in different environments are controlled by the daily amount of photosynthesis. Photosynthetic rates per unit area and mesophyll conductances at 25°C and air levels of CO2 and O2, and parameters for two photosynthesis models were used to characterize the photosynthetic properties of the leaves. Leaves with highest values of the photosynthetic parameters for each species were often developed in environments with irradiance levels below saturation for photosynthesis, and with only 12 hours of irradiance per day. Lower air temperature during growth increased the photosynthetic characteristics for a given irradiance regime. Photosynthetic characteristics had higher correlation coefficients with daily photosynthesis of mature leaves divided by 24-hour leaf elongation rates of young leaves, than with daily photosynthesis alone, indicating that photosynthetic characteristics may be related to a balance between photosynthesis and leaf expansion.  相似文献   
8.
Abstract. Peas were grown in controlled environments (12h white fluorescent light. ∼47 μmol photons m-2 s 1/12 dark, 25 °C), using (1) 15-min far-red illumination at the end of each photoperiod (brief FR) to simulate the increase in the far-red/red ratio near the end of the day, and (2) high levels of supplementary far-red light (red:far-red ratio=0.04) during the entire photoperiod (long-term FR) to simulate extreme shade conditions under a plant canopy. Brief FR illumination led to marked morphological effects attributable to phytochrome regulation, namely, an increase in internodal length, but a decrease in leaflet area, chloroplast size and chlorophyll content per chloroplast compared with the control. Significantly, brief FR illumination had little or no effect on the amounts of the major chloroplast components (ribulose 1.5-biphosphate carboxylase, adenosine triphosphate synthase, cytochrome b/f complex and Photosystem II) relative to chlorophyll or Photosystem I, and the leaf photosynthetic capacities per unit chlorophyll were similar. In contrast, supplementing high levels of far-red light during the entire photoperiod not only led to the phytochrome effects above, but there was also a marked increase in leaf photosynthetic capacity per unit chlorophyll. due to increased amounts of the major chloroplast components relative to chlorophyll or Photosystem I. We hypothesize that supplementary far-red light, absorbed by Photosystem I, induced an increase in the major chloroplast components by a photosynthetic feedback mechanism. In fully greened leaves, we propose that the two photosystems themselves, rather than phytochrome, may be the predominent sensors of light quantity in triggering modulations of the stoichiometries of chloroplast components, which in turn lead to varying photosynthetic capacities.  相似文献   
9.
Cultures of Rhizosolenia formosa H. Peragallo were studied to assess whether or not physiological and optical characteristics of this large diatom were consistent with the ability to migrate vertically in the open ocean. Time-course experiments examined changes in chemical composition and buoyancy of R. formosa during nitrate (N)–replete growth, N starvation, and recovery. Cells could maintain unbalanced growth for at least 53 h after depletion of ambient nitrate. Increases in C:N and carbohydrate: protein ratios observed during N starvation reversed within 24 h of reintroduction of nitrate to culture medium. Buoyancy was related to nutrition: Upon N depletion, the percentage of positively buoyant cells decreased to 4% from 11% but reverted to 9% within 12 h of nitrate readdition. Cells took up nitrate in the dark. Nitrogen-specific uptake rates averaged 0.48 d?1; these rates were higher than N-specific growth rates (0. 15 d?1), indicating the potential for luxury consumption of nitrate, which can be stored for later use. Measurements of photosynthesis vs. irradiance, chlorophyll-specific absorption (aph*(λ)), and pigment composition showed that cells may be adapted for growth under a wide range of irradiances. Values of aph*(λ) were lower for N-depleted cells than for N-replete cells, and N-depleted cells had higher ratios of total carotenoids to chlorophyll a. Aggregation of chloroplasts was more pronounced in N-depleted cells. These are possibly photoprotective mechanisms that would be an advantage to N-depleted cells in surface waters. Compounds that absorb in the ultraviolet region were detected in N-replete cells but were absent in N-depleted cultures. Overall, these results have important implications for migrations of Rhizosolenia in nature. Cells may survive fairly long periods in N-depleted surface waters and will continue to take up carbon; then they can resume nitrate uptake and revert to positive buoyancy upon returning to deep, N-rich water. Uncoupled uptake of carbon and nitrogen during migrations of Rhizosolenia is a form of new production that may result in the net removal of carbon from oceanic surface waters.  相似文献   
10.
Although the spectral quality of light in the ocean varies considerably with depth, the effect of light quality on different physiological processes in marine phytoplankton remains largely unknown. In cases where experiments are performed under full spectral irradiance, the meaning of these experiments in situ is thus unclear. In this study, we determined whether variations in spectral quality affected the sinking rates of marine diatoms. Semicontinuous batch cultures of Thalassiosira weissflogii (Gru.) Fryxell et Hasle and Ditylum brightwellii (t. West) Grunow in Van Huerk were grown under continuous red, white, or blue light. For T. weissflogii, sinking rates (SETCOL method) were twice as high (~0.2 m·d?1)for cells grown under red light as for cells grown under white or blue light (~0.08 m·d?1), but there were no significant differences in carbohydrate content (~105 fg·μm?3) or silica content (~ 17 fg·μ?3) to account for the difference in sinking rates. Thalassiosira weissflogii grown under blue light was significantly smaller (495 μm3) than cells grown under red light (661 μm3), which could contribute to its reduced sinking rate. However, cells grown under white light were similar in size to those grown under red light but had sinking rates not different from those of cells grown under blue light, indicating the involvement of factors other than size. There were no significant differences in sinking rate (~0.054 m·d?1) or silica content (~20 fg·μm?3) in D. brightwellii grown under red, white, or blue light, but cells grown under red light were significantly (20%) larger and contained significantly (20%) more carbohydrate per μm3 than cells grown under white or blue light. Spectral quality had no consistent effect on sinking rate, biochemical composition (carbohydrate or silica content), or cell volume in the two diatoms studied. The similarity in sinking rate of cells grown under white light compared to those grown under blue light supports the ecological validity of sinking rate studies done under white light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号