首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   6篇
  国内免费   12篇
  2021年   1篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   12篇
  2013年   13篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   20篇
  2008年   12篇
  2007年   22篇
  2006年   20篇
  2005年   7篇
  2004年   15篇
  2003年   13篇
  2002年   20篇
  2001年   12篇
  2000年   10篇
  1999年   7篇
  1998年   11篇
  1997年   13篇
  1996年   19篇
  1995年   16篇
  1994年   10篇
  1993年   14篇
  1992年   17篇
  1991年   11篇
  1990年   10篇
  1989年   10篇
  1988年   14篇
  1987年   13篇
  1986年   8篇
  1985年   6篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   9篇
  1980年   6篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
1.
Ice crystal formation temperature was determined in the region of the crown in one group of 7-day-old intact unhardened high-salt plants of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) with TA (Thermal Analysis) and DTA (Differential Thermal Analysis) methods. After exposure of another group of plants, grown for the first 7 days in the same way as the first group, to various sub-zero temperatures (-1 to 5°C), influx in roots of Rb+(86Rb+) and Ca2+(45Ca2+) and contents of K+ and Ca2+ were determined at intervals during 7 days of recovery. Ice crystal formation in the crown tissue was probably extracellular and took place at about -4°C. There was a large loss of K+ from the roots after treatment at sub-zero temperatures. This loss increased as the temperature of the sub-zero treatment decreased. During recovery, roots of plants exposed to -1, -2 and -3°C gradually reabsorbed K+. Reabsorption of K+ in roots of plants exposed to -4°C was greatly impaired. Rb+ influx decreased and Ca2+ influx increased after sub-zero temperature treatments of the plants. Active Rb+ influx mechanisms and active extrusion of Ca2+ were impaired or irreversibly damaged by the exposure. While Rb+ influx mechanisms were apparently repaired during recovery in plants exposed to temperatures down to -3°C, Ca2+ extrusion mechanisms were not. The temperature for ice crystal formation in the region of the crown tissue coincides with the temperature at which the plants lost the ability to reabsorb K+ and to repair Rb+ influx mechanisms during the recovery period. Plants were lethally damaged at temperatures below ?4°C.  相似文献   
2.
3.
Male Fischer-344 rats, 21 days old, were fed diets containing 0 (LOD), 2,200 (CONT), or 440,000 (HID) international units of vitamin D3 per kilogram for 12 weeks. [Ca] was measured in plasma, CSF, brain, and choroid plexus. In addition, 45Ca and 36Cl transfer coefficients (KCa and KCl) for uptake from blood into CSF and brain were determined. Although plasma ionized [Ca]s in LOD and HID rats were 50% and 136%, respectively, of values in CONT animals, CSF and brain [Ca]s ranged from only 85% to 110% of respective CONT values. Choroid plexus [Ca] was increased by 37% after HID diet, but was decreased only 10% after LOD. KCa values at CSF, parietal cortex, and pons-medulla were negatively correlated with plasma ionized [Ca], whereas KCl values at CSF and brain were not different between the diet groups. The findings demonstrate that central nervous system [Ca] is maintained during chronic hypo- or hypercalcemia by saturable transport of Ca at brain barrier membranes. This transport does not seem to involve modulation by 1,25-dihydroxyvitamin D3.  相似文献   
4.
5.
The role of Ca2+ in the human sperm acrosome reaction was investigated using the fluorescent calcium indicator fura-2. Previous experiments have shown that a Sephadex G-75 column fraction of human follicular fluid can stimulate the human sperm acrosome reaction [Suarez SS, Wolf DP, Meizel S (1986): Gamete Res 14:107–121]. Using fura-2, we demonstrated that this Sephadex G-75 fraction also stimulates a rapid, transient increase in intracellular free Ca2+. This Ca2+ transient is blocked either by chelation of extracellular calcium or by addition of the Ca2+ antagonist La3+. We have also been able to stimulate the acrosome reaction in human sperm without significant loss of motility, using the divalent cation ionophore ionomycin. Acrosome reactions stimulated by whole follicular fluid, the G-75 fraction, or ionomycin are all blocked by removal of extracellular Ca2+. These results strongly suggest that an influx of extracellular Ca2+ is responsible for intiating the acrosome reaction in human sperm treated with human follicular fluid. This is the first demonstration in mammalian sperm that a potentially physiological stimulus can cause an increase in intracellular Ca2+ concomitant with the acrosome reaction.  相似文献   
6.
Conclusions While it is generally accepted that Ca2+ plays an important regulatory role in the physiology of a number of non-excitable cells, the mechanisms which regulate intracellular [Ca2+ are far from well established. Ca2+ transporting mechanisms which distribute Ca2+ intracellularly as well as those which allow influx of extracellular Ca2+ are involved in mediating intracellular Ca2+ homestasis. In this paper we have described recent studies on the regulation of the Ca2+ influx system in the data, it appears that the process of Ca2+ entry is extremely complex and may involve several levels of regulation. Understanding the molecular basis of these regulatory mechanisms presents a challeging problem for future studies.  相似文献   
7.
A. Limami  T. Lamaze 《Plant and Soil》1991,138(1):115-121
The lower part (4 cm) of the witloof chicory tap-root (15 cm) was immersed in a complete nutrient solution for 21 days, in the darkness at 18°C and at high RH. This process of forcing which leads to the emergence of an etiolated bud (chicon) was associated with a decrease in root dry weight. Although the amount of calcium in the root and the root cationic exchange capacity remained constant during forcing, the net uptake of calcium, negligible at the onset of forcing, progressively increased to a rate after ten days of 45 mol day–1. Absorption of 45Ca remained at a constant high rate, while the initially low upward migration of 45Ca within the root and the chicon accelerated markedly. This upward migration was associated with a progressive decline in the release of newly absorbed 45Ca. The data support the hypothesis that calcium acquisition by witloof chicory root is predominantly determined by calcium efflux. As the forcing progressed, the influx remained almost constant while a large decrease in the efflux led to a net uptake of calcium. Upward translocation was probably linked to the formation of new negative exchange sites within the growing chicon. The hypothesis that calcium movement occurred along a preferential pathway (xylem vessels) or involved a mass movement through the root is discussed.  相似文献   
8.
Phosphorus efficiency of plants   总被引:1,自引:0,他引:1  
Föhse et al. (1988) have shown that P influx per unit root length in seven plant species growing in a low-P soil varied from 0.6×10-14 to 4.8×10-14 mol cm-1s-1. The objective of this work was to investigate the reasons for these differences. No correlation was found between P influx and root radius, root hairs, cation-anion balance and Ca uptake. However, when root hairs were included in mathematical model calculations, the differences of P influx could be accounted for. These calculations have shown that in soils low in available P, contribution to P uptake by root hairs was up to 90% of total uptake. The large contribution of root hairs to P uptake was partly due to their surface area, which was similar to that of the root cylinder. However, the main reason for the high P uptake efficiency of root hairs was their small radius (approx. 5×10-4 cm) and their perpendicular growth into the soil from the root axis. Because of the small radius compared to root axes, P concentration at root hair surfaces decreased at a slower pace and therefore P influx remained higher. Under these conditions higher Imax (maximum influx) or smaller Km values (Michaelis constant) increased P influx. The main reasons for differences found in P influx among species were the size of Imax and the number and length of root hairs. In a soil low in available P, plant species having more root hairs were able to satisfy a higher proportion of their P demand required for maximum growth.  相似文献   
9.
Summary The permeability of the Na channel of squid giant axon to organic cations and small nonelectrolytes was studied. The compounds tested were guanidinium, formamidinium, and14C-labeled urea, formamide, thiourea, and acetone. Permeability was calculated from measurements of reversal potential and influx on internally perfused, voltage clamped squid axons. The project had two objectives: (1) to determine whether different methods of measuring the permeability of organic cations yield similar values and (2) to see whether neutral analogs of the organic cations can permeate the Na channel. Our results show that the permeability ratio of sodium to a test ion depends upon the ionic composition of the solution used. This finding is consistent with the view put forward previously that the Na channel can contain more than one ion at a time. In addition, we found that the uncharged analogs of permeant cations are not measurably permeant through the Na channel, but instead probably pass through the lipid bilayer.  相似文献   
10.
Summary Methods are described which demonstrate the use of unidirectional influx of14C-tetraphenylphosphonium (14C-TPP+) into isolated intestinal epithelial cells as a quantitative sensor of the magnitude of membrane potentials created by experimentally imposed ion gradients. Using this technique the quantitative relationship between membrane potential () and Na+-dependent sugar influx was determined for these cells at various Na+ and -methylglucoside (-MG) concentrations. The results show a high degree of dependence for the transport Michaelis constant but a maximum velocity for transport which is independent of . No transinhibition by intracellular sugar (40mm) can be detected. Sugar influx in the absence of Na+ is insensitive to 1.3mm phlorizin and independent of . The mechanistic implications of these results were evaluated using the quality of fit between calculated and experimentally observed kinetic constants for rate equations derived from several transport models. The analysis shows that for models in which translocation is the potential-dependent step the free carrier cannot be neutral. If it is anionic, the transporter must be functionally asymmetric. A model in which Na+ binding is the potential-dependent step (Na+ well concept) also provides an appropriate kinetic fit to the experimental data, and must be considered as a possible mechanistic basis for function of the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号