首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   8篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   1篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1991年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有37条查询结果,搜索用时 19 毫秒
1.
《Cell》2022,185(18):3375-3389.e21
  1. Download : Download high-res image (276KB)
  2. Download : Download full-size image
  相似文献   
2.
Despite widespread variability and redundancy abounding animal immunity, little is currently known about the rate of evolutionary convergence (functionally analogous traits not inherited from a common ancestor) in host molecular adaptations to parasite selective pressures. Toll‐like receptors (TLRs) provide the molecular interface allowing hosts to recognize pathogenic structures and trigger early danger signals initiating an immune response. Using a novel combination of bioinformatic approaches, here we explore genetic variation in ligand‐binding regions of bacteria‐sensing TLR4 and TLR5 in 29 species belonging to the tit family of passerine birds (Aves: Paridae). Three out of the four consensual positively selected sites in TLR4 and six out of 14 positively selected positions in TLR5 were located on the receptor surface near the functionally important sites, and based on the phylogenetic pattern evolved in a convergent (parallel) manner. This type of evolution was also seen at one N‐glycosylation site and two positively selected phosphorylation sites, providing the first evidence of convergence in post‐translational modifications in evolutionary immunology. Finally, the overall mismatch between phylogeny and the clustering of surface charge distribution demonstrates that convergence is common in overall TLR4 and TLR5 molecular phenotypes involved in ligand binding. Our analysis did not reveal any broad ecological traits explaining the convergence observed in electrostatic potentials, suggesting that information on microbial symbionts may be needed to explain TLR evolution. Adopting state‐of‐the‐art predictive structural bionformatics, we have outlined a new broadly applicable methodological approach to estimate the functional significance of positively selected variation and test for the adaptive molecular convergence in protein‐coding polymorphisms.  相似文献   
3.
With their direct link to individual fitness, genes of the major histocompatibility complex (MHC) are a popular system to study the evolution of adaptive genetic diversity. However, owing to the highly dynamic evolution of the MHC region, the isolation, characterization and genotyping of MHC genes remain a major challenge. While high‐throughput sequencing technologies now provide unprecedented resolution of the high allelic diversity observed at the MHC, in many species, it remains unclear (i) how alleles are distributed among MHC loci, (ii) whether MHC loci are linked or segregate independently and (iii) how much copy number variation (CNV) can be observed for MHC genes in natural populations. Here, we show that the study of allele segregation patterns within families can provide significant insights in this context. We sequenced two MHC class I (MHC‐I) loci in 1267 European barn owls (Tyto alba), including 590 offspring from 130 families using Illumina MiSeq technology. Coupled with a high per‐individual sequencing coverage (~3000×), the study of allele segregation patterns within families provided information on three aspects of the architecture of MHC‐I variation in barn owls: (i) extensive sharing of alleles among loci, (ii) strong linkage of MHC‐I loci indicating tandem architecture and (iii) the presence of CNV in the barn owl MHC‐I. We conclude that the additional information that can be gained from high‐coverage amplicon sequencing by investigating allele segregation patterns in families not only helps improving the accuracy of MHC genotyping, but also contributes towards enhanced analyses in the context of MHC evolutionary ecology.  相似文献   
4.
The aim of this review is to present a concise overview of all data available on the immunogenetics of Chlamydia trachomatis infections, both sexually transmitted urogenital and ocular infections. Currently, candidate gene approaches are used to identify genes related to the susceptibility to and severity of C. trachomatis infections. The main focus in the review will be on data obtained by the study of human cohorts.  相似文献   
5.
The amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. Reevaluating the causes of the panzootic is timely given the wealth of data on Bd prevalence across hosts and communities and the recent discoveries suggesting co‐evolutionary potential of hosts and Bd. We generate a new species distribution model for Bd in the Americas based on over 30,000 records and suggest a novel future research agenda. Instead of focusing on pathogen “hot spots,” we need to identify pathogen “cold spots” so that we can better understand what limits the pathogen''s distribution. Finally, we introduce the concept of “the Ghost of Epizootics Past” to discuss expected patterns in postepizootic host communities.  相似文献   
6.
The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll‐like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome‐level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole‐genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29–220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long‐term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad‐scale immunogenetic diversity analysis in threatened species.  相似文献   
7.
The major histocompatibility complex (MHC) is a key model of genetic polymorphism, but the mechanisms underlying its extreme variability are debated. Most hypotheses for MHC diversity focus on pathogen-driven selection and predict that MHC polymorphism evolves under the pressure of a diverse parasite fauna. Several studies reported that certain alleles offer protection against certain parasites, yet it remains unclear whether variation in parasite pressure more generally covaries with allelic diversity and rates of molecular evolution of MHC across species. We tested this prediction in a comparative study of 41 primate species. We characterized polymorphism of the exon 2 of DRB region of the MHC class II. Our phylogenetic analyses controlled for the potential effects of neutral mutation rate, population size, geographic origin and body mass and revealed that nematode species richness associates positively with nonsynonymous nucleotide substitution rate at the functional part of the molecule. We failed to find evidence for allelic diversity being strongly related to parasite species richness. Continental distribution was a strong predictor of both allelic diversity and substitution rate, with higher values in Malagasy and Neotropical primates. These results indicate that parasite pressure can influence the different estimates of MHC polymorphism, whereas geography plays an independent role in the natural history of MHC.  相似文献   
8.
Despite the large number of genes contributing to the immune response, wildlife immunogenetic studies have tended to focus mostly on the major histocompatibility complex-related genes. Here, we utilized previously published microarray and competitive RNA hybridization information to identify 3750 immune relevant Atlantic salmon (Salmo salar) expressed sequence tags. We then identified those expressed sequence tags containing microsatellites and subsequently designed 48 primer pairs and tested them for polymorphism in Atlantic salmon. Altogether, 16 polymorphic markers were characterized, with allele numbers ranging from two to 18, and these 16 loci were further tested in five other salmonid species.  相似文献   
9.
Several hypotheses predict that the major histocompatibility complex (MHC) drives mating preference in females. Olfactory, colour or morphological traits are often found as reliable signals of the MHC profile, but the role of avian song mediating MHC‐based female choice remains largely unexplored. We investigated the relationship between several MHC and acoustic features in the collared flycatcher (Ficedula albicollis), a European passerine with complex songs. We screened a fragment of the class IIB second exon of the MHC molecule, of which individuals harbour 4–15 alleles, while considerable sequence diversity is maintained at the population level. To make statistical inferences from a large number of comparisons, we adopted both null‐hypothesis testing and effect size framework in combination with randomization procedures. After controlling for potential confounding factors, neither MHC allelic diversity nor the presence of particular alleles was associated remarkably with the investigated qualitative and quantitative song traits. Furthermore, genetic similarity among males based on MHC sequences was not reflected by the similarity in their song based on syllable content. Overall, these results suggest that the relationship between features of song and the allelic composition and diversity of MHC is not strong in the studied species. However, a biologically motivated analysis revealed that individuals that harbour an MHC allele that impairs survival perform songs with broader frequency range. This finding suggests that certain aspects of the song may bear reliable information concerning the MHC profile of the individuals, which can be used by females to optimize mate choice.  相似文献   
10.
本文采用经典免疫遗传学方法研究了鲤鱼不同基因组组合的基因剂量与抗原表达的关系。分别从红鲤(RC)、红鲫(RA)、镜鲤(MC)和鲤鲫二倍体杂种(CA)采血样,制备红细胞悬液。常规方法免疫兔子,使效价高于64,制备抗RC、RA、MC、CA血清。Tab.1为2N、3N、4N鲤鱼来源的红细胞与四种抗血清的凝集实验结果,表明:亲缘关系越近,滴度越高;不过,不同倍性鲤鱼之间,差异不显著。Tab.2为2N、3N、4N鲤鱼来源的红细胞与四种抗血清吸附反应后,与各自靶细胞RC、RA、MC、CA的吸收实验结果,表明:抗血清被吸附后的残留活性与受试者的亲缘关系呈反比,即:亲缘关系越近,残留活性越低。以CA/antiCA组为例,CCA为16,MC为32,表明:两者均含有镜鲤基因组,而后者多一套镜鲤基因组,吸收效价亦有随之增高的趋势。基于Tab.2可以推演出鲤鱼不同基因组组合的系(种)血清学检索表(Tab.3)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号