首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   21篇
  国内免费   40篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   7篇
  2019年   11篇
  2018年   11篇
  2017年   10篇
  2016年   17篇
  2015年   8篇
  2014年   10篇
  2013年   22篇
  2012年   11篇
  2011年   10篇
  2010年   9篇
  2009年   13篇
  2008年   10篇
  2007年   9篇
  2006年   13篇
  2005年   11篇
  2004年   6篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
排序方式: 共有261条查询结果,搜索用时 656 毫秒
1.
用相关和回归处理方法,研究了8条正常狗咽喉部高频喷射通气时,调节驱动压、呼吸比和频率对喷气量、吸入气氧浓度、动脉血气及气道内压的作用。结果显示,驱动压和呼吸此对各观察指标几乎有同等重要的作用,频率的影响很小,喷气量与吸入气氧浓度、动脉血气、气道内压间存在显著的正相关关系。说明调节参数的意义主要在于改变了喷气量。  相似文献   
2.
Summary A gas transport system based upon the physico-chemical effect of thermo-osmosis of gases in described for the black alder, Alnus glutinosa (L.) Gaertn. Air is transported through the alder's stem to the roots, thus improving O2 supply to respiring tissues of the root system. The gas transport system is investigated by means of a tracer gas technique (11% ethane in air, v/v). Gas transport depends on any source of radiant heat generating a temperature difference between the tree's stems and the atmosphere. The amount of gas transported in leafless trees is four times higher than the amount of gas reaching the roots by gas diffusion. Two-thirds of the gas is transported in the wood, only one-third in the bark. Intercellular spaces inside the porous lenticels of the bark are responsible for this kind of gas transport. Their diameters are estimated by the effusion rates of different tracer gases to be in the range of 1 m.  相似文献   
3.
Oxygen consumption, air cell gases, hematology, blood gases and pH of Puna teal (Anas versicolor puna) embryos were measured at the altitude at which the eggs were laid (4150 m) in the Peruvian Andes. In contrast to the metabolic depression described by other studies on avian embryos incubated above 3700 m, O2 consumption of Puna teal embryos was higher than even that of some lowland avian embryos at equivalent body masses. Air cell O2 tensions dropped from about 80 toor in eggs with small embryos to about 45 toor in eggs containing a 14-g embryo; simultaneously air cell CO2 tension rose from virtually negligible amounts to around 26 torr. Arterial and venous O2 tensions (32–38 and 10–12 toor, respectively, in 12- to 14-g embryos) were lower than described previously in similarly-sized lowland wild avian embryos or chicken embryos incubated in shells with restricted gas exchange. The difference between air cell and arterial O2 tensions dropped significantly during incubation to a minimum of 11 torr, the lowest value recorded in any avian egg. Blood pH (mean 7.49) did not vary significantly during incubation. Hemoglobin concentration and hematocrits rose steadily throughout incubation to 11.5 g · 100 ml-1 and 39.9%, respectively, in 14-g embryos.Abbreviations PO2 partial pressure gradient of O2 - BM body mass - D diffusion coefficient - G gas conductance (cm3·s-1·torr-1) - conductance to water vapor - IP internal pipping of embryos - P ACO2 partial pressure of carbon dioxide in air cell - P AO2 partial pressure of oxygen in air cell - P aCO2 partial pressure of carbon dioxide in arterial blood - P aCO2 partial pressure of oxygen in arteries - P H barometric pressure (torr) - PCO2 partial pressure of carbon dioxide - P IO2 partial pressure in ambiant air - PO2 partial pressure of oxygen - P VCO2 venous carbon dioxide partial pressure - P VO2 mixed venous oxygen partial pressure - SE standard error - VO 2 oxygen consumption  相似文献   
4.
Integrated non-porous membrane systems were applied for microbial combustible gas separation processes. Methane/CO2 mixtures of various concentrations from methane fermentation processes (biogas) were separated using a membrane-separation complex of permabsorber type into individual components of technical grade (more than 95% purity). In experiments with three-component mixtures, using a selective membrane valve with various liquid carriers, all the gases of interest (H2, CH4 and CO2) were obtained at greater than 90% purity in one separation step. The perspectives for the further application of non-porous membrane separating devices for various gaseous mixtures from different microbial processes are discussed.V. Teplyakov and E. Sostina are with the A.V. Topchiev institute of Petrochemical Synthesis, Russian Academy of Sciences, Membrane Research Center, Moscow 117912, Russia. E. Sostina is also, and A. Netrusov is with the Microbiology Department, Moscow University, Moscow 119899, Russia. I. Beckman is with the Chemistry Department, Moscow University, Moscow 119899, Russia.  相似文献   
5.
Influence of soil gas contamination on tree root growth   总被引:1,自引:0,他引:1  
Summary Rooted-cuttings and saplings of green ash (Fraxinus lanceolata) and hybrid poplar (Populus spp) were planted on a former municipal refuse landfill and on a nearby nonlandfill control plot. The root systems of four trees of each species and size were excavated on the landfill plot-two growing in an area where the concentrations of anaerobic landfill gases were relatively high and two in a relatively low-gas area. Two trees of each species and size were also excavated on the control. The root systems of both species were significantly shallower on the landfill plot than on the control. Green ash appeared to avoid the adverse gas environment of the deeper soil layers on the landfill by producing adventitious roots. Hybrid poplar became adapted in a different manner, by redirecting root growth from the deepter soil layers to the soil surface.  相似文献   
6.
The effects of pressure, temperature and some organic solvents on the recovery of various lipid classes from plant and animal tissues can be assessed by fractional extraction with dense carbon dioxide and consecutive analysis by thin-layer chromatography.  相似文献   
7.
Calcium sulfoaluminate‐based cements (CSA) are proposed as a cement alternative with a low carbon footprint. The nature of CSA makes the manufacturing process to require lower temperature, less fuel, and less calcite. However, it requires aluminum oxide, Al2O3, which would be originated from bauxite and bauxite‐derived wastes, and sulfur, coming from calcium sulfate or elemental sulfur. An eco‐efficiency assessment of CSA cements, benchmarked against the conventional Portland cement, has been performed following the principles of ISO 14045 on eco‐efficiency for a total of 240 CSA clinker production scenarios. The eco‐efficiency indicator relates an environmental indicator with a product system value indicator, and it is calculated for each of the studied parameters: bauxite geographical origin, the fuel used for clinkering, the source of sulfur, and the composition of the clinker. Eco‐efficiency results show a strong dependence on the origin of bauxite, while other parameters, as the fuel used, its content in sulfur, or the supply of other raw materials, are of less importance. The most eco‐efficient solutions are those with certain closeness to bauxite sources. To achieve global solutions, that is, cement‐making based on CSA independently of the origin of the raw materials, the amount of bauxite needs to be minimized and CSA composition restricted.  相似文献   
8.
Estimates of regional and global freshwater N2O emissions have remained inaccurate due to scarce data and complexity of the multiple processes driving N2O fluxes the focus predominantly being on summer time measurements from emission hot spots, agricultural streams. Here, we present four‐season data of N2O concentrations in the water columns of randomly selected boreal lakes covering a large variation in latitude, lake type, area, depth, water chemistry, and land use cover. Nitrate was the key driver for N2O dynamics, explaining as much as 78% of the variation of the seasonal mean N2O concentrations across all lakes. Nitrate concentrations varied among seasons being highest in winter and lowest in summer. Of the surface water samples, 71% were oversaturated with N2O relative to the atmosphere. Largest oversaturation was measured in winter and lowest in summer stressing the importance to include full year N2O measurements in annual emission estimates. Including winter data resulted in fourfold annual N2O emission estimates compared to summer only measurements. Nutrient‐rich calcareous and large humic lakes had the highest annual N2O emissions. Our emission estimates for Finnish and boreal lakes are 0.6 and 29 Gg N2O‐N/year, respectively. The global warming potential of N2O from lakes cannot be neglected in the boreal landscape, being 35% of that of diffusive CH4 emission in Finnish lakes.  相似文献   
9.
马英  匡晓奎  刘杰  杨云锋 《微生物学通报》2021,48(10):3835-3846
高寒草地生态系统具有独特的地理环境和气候特征,对放牧干扰十分敏感,在全球温室气体通量中贡献突出,研究高寒草地放牧对土壤温室气体排放的影响机制具有重要意义。本文总结高寒草地温室气体源/汇特征、不同放牧方式对土壤微环境和微生物群落结构的影响,发现高寒草地主要是CO2源、CH4汇、N2O源。放牧通过家畜选择性采食、践踏和排泄物返还等多重机制作用于地上植物、土壤结构、温度、湿度和养分,进而影响地下微生物及温室气体通量。本文旨在为高寒草地生态系统健康发展和管理及缓解全球气候变化提供科学依据,并对未来研究方向进行展望。  相似文献   
10.
The aquatic pathway is increasingly being recognized as an important component of catchment carbon and greenhouse gas (GHG) budgets, particularly in peatland systems due to their large carbon store and strong hydrological connectivity. In this study, we present a complete 5‐year data set of all aquatic carbon and GHG species from an ombrotrophic Scottish peatland. Measured species include particulate and dissolved forms of organic carbon (POC, DOC), dissolved inorganic carbon (DIC), CO2, CH4 and N2O. We show that short‐term variability in concentrations exists across all species and this is strongly linked to discharge. Seasonal cyclicity was only evident in DOC, CO2 and CH4 concentration; however, temperature correlated with monthly means in all species except DIC. Although the temperature correlation with monthly DOC and POC concentrations appeared to be related to biological productivity in the terrestrial system, we suggest the temperature correlation with CO2 and CH4 was primarily due to in‐stream temperature‐dependent solubility. Interannual variability in total aquatic carbon concentration was strongly correlated with catchment gross primary productivity (GPP) indicating a strong potential terrestrial aquatic linkage. DOC represented the largest aquatic carbon flux term (19.3 ± 4.59 g C m?2 yr?1), followed by CO2 evasion (10.0 g C m?2 yr?1). Despite an estimated contribution to the total aquatic carbon flux of between 8 and 48%, evasion estimates had the greatest uncertainty. Interannual variability in total aquatic carbon export was low in comparison with variability in terrestrial biosphere–atmosphere exchange, and could be explained primarily by temperature and precipitation. Our results therefore suggest that climatic change is likely to have a significant impact on annual carbon losses through the aquatic pathway, and as such, aquatic exports are fundamental to the understanding of whole catchment responses to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号