首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   6篇
  2015年   6篇
  2013年   3篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Spinel‐structured LiMn2O4 (LMO) is a desirable cathode material for Li‐ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single‐layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene‐coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X‐ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single‐layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn3+ at the LMO electrode surface, promoting an oxidation state change to Mn4+, which suppresses dissolution.  相似文献   
2.
3.
4.
5.
Carbon nanotubes, graphene and fullerenes are actual nanomaterials with many applications in different industrial areas, with increasing potentialities in the field of nanomedicine. Recently, different proactive approaches on toxicology and safety management have become the focus of intense interest once the industrial production of these materials had a significant growth in the last years, even though their short‐ and long‐term behaviors are not yet fully understood. The most important concerns involving these carbon‐based nanomaterials are their stability and potential effects of their life cycles on animals, humans, and environment. In this context, this mini review discuss the biodegradability of these materials, particularly through redox‐enzymes, micro‐organisms and cells, to contribute toward the design of biocompatible and biodegradable functionalized carbon nanostructures, in order to use these materials safely and with minimum impact on the environment. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   
6.
Supercapacitors are known for their rapid energy charge–discharge properties, often ten to a hundred times faster than batteries. However, there is still a demand for supercapacitors with even faster charge–discharge characteristics to fulfill the requirements of emerging technologies. The power and rate capabilities of supercapacitors are highly dependent on the morphology of their electrode materials. An electrically conductive 3D porous structure possessing a high surface area for ions to access is ideal. Using a flash of light, a method to produce highly interconnected 3D graphene architectures with high surface area and good conductivity is developed. The flash converted graphene is synthesized by reducing freeze‐dried graphene oxide using an ordinary camera flash as a photothermal source. The flash converted graphene is used in coin cell supercapacitors to investigate its electrode materials properties. The electrodes are fabricated using either a precoating flash conversion or a postcoating flash conversion of graphene oxide. Both techniques produce supercapacitors possessing ultra‐high power (5–7 × 105 W kg?1). Furthermore, optimized supercapacitors retain >50% of their capacitance when operated at an ultrahigh current density up to 220 A g?1.  相似文献   
7.
A novel strategy of utilizing supramolecular polymerization for fabricating nitrogen doped porous graphene (NPG) with high doping level of 12 atom% as the anode material for lithium ion batteries is reported for the first time. The introduction of supramolecular polymer (melamine cyanurate) functions not only as a spacer to prevent the restacking of graphene sheets but also as a sacrificial template to generate porous structures, as well as a nitrogen source to induce in situ N doping. Therefore, pores and loose‐packed graphene thin layers with high N doping level are very effectively formed in NPG after the annealing process. Such highly desired structures immediately offer remarkably improved Li storage performance including high reversible capacity (900 mAh g?1 after 150 cycles) with good cycling and rate performances. The effects of annealing temperature and heating rates on the final electrochemical performance of NPG are also investigated. Furthermore, the low cost, facile, and scalable features of this novel strategy may be helpful for the rational design of functionalized graphene‐based materials for diverse applications.  相似文献   
8.
Vertical graphene nanosheets (VGNS) hold great promise for high‐performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three‐dimensional, open network structure. However, it remains challenging to materialise the VGNS‐based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non‐cost effective way of fabrication. Here we use a single‐step, fast, scalable, and environmentally‐benign plasma‐enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder‐free supercapacitor electrodes exhibit high specific capacitance up to 230 F g?1 at a scan rate of 10 mV s?1 and >99% capacitance retention after 1,500 charge‐discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano‐architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma‐unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号