首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5012篇
  免费   935篇
  国内免费   407篇
  2024年   15篇
  2023年   213篇
  2022年   115篇
  2021年   292篇
  2020年   349篇
  2019年   417篇
  2018年   300篇
  2017年   322篇
  2016年   329篇
  2015年   305篇
  2014年   404篇
  2013年   407篇
  2012年   285篇
  2011年   288篇
  2010年   188篇
  2009年   266篇
  2008年   236篇
  2007年   231篇
  2006年   172篇
  2005年   157篇
  2004年   126篇
  2003年   116篇
  2002年   87篇
  2001年   89篇
  2000年   72篇
  1999年   68篇
  1998年   46篇
  1997年   69篇
  1996年   53篇
  1995年   40篇
  1994年   43篇
  1993年   35篇
  1992年   36篇
  1991年   24篇
  1990年   21篇
  1989年   22篇
  1988年   15篇
  1987年   21篇
  1986年   9篇
  1985年   4篇
  1984年   16篇
  1983年   5篇
  1982年   5篇
  1981年   15篇
  1980年   8篇
  1978年   7篇
  1977年   2篇
  1976年   3篇
  1973年   1篇
  1972年   2篇
排序方式: 共有6354条查询结果,搜索用时 31 毫秒
1.
Aim It is a central issue in ecology and biogeography to understand what governs community assembly and the maintenance of biodiversity in tropical rain forest ecosystems. A key question is the relative importance of environmental species sorting (niche assembly) and dispersal limitation (dispersal assembly), which we investigate using a large dataset from diverse palm communities. Location Lowland rain forest, western Amazon River Basin, Peru. Methods We inventoried palm communities, registering all palm individuals and recording environmental conditions in 149 transects of 5 m × 500 m. We used ordination, Mantel tests and indicator species analysis (ISA) to assess compositional patterns, species responses to geographical location and environmental factors. Mantel tests were used to assess the relative importance of geographical distance (as a proxy for dispersal limitation) and environmental differences as possible drivers of dissimilarity in palm species composition. We repeated the Mantel tests for subsets of species that differ in traits of likely importance for habitat specialization and dispersal (height and range size). Results We found a strong relationship between compositional dissimilarity and environmental distance and a weaker but also significant relationship between compositional dissimilarity and geographical distance. Consistent with expectations, relationships with environmental and geographical distance were stronger for understorey species than for canopy species. Geographical distance had a higher correlation with compositional dissimilarity for small‐ranged species compared with large‐ranged species, whereas the opposite was true for environmental distance. The main environmental correlates were inundation and soil nutrient levels. Main conclusions The assembly of palm communities in the western Amazon appears to be driven primarily by species sorting according to hydrology and soil, but with dispersal limitation also playing an important role. The importance of environmental characteristics and geographical distance varies depending on plant height and geographical range size in agreement with functional predictions, increasing our confidence in the inferred assembly mechanisms.  相似文献   
2.
A number of evolutionary hypotheses can be tested by comparing selective pressures among sets of branches in a phylogenetic tree. When the question of interest is to identify specific sites within genes that may be evolving differently, a common approach is to perform separate analyses on subsets of sequences and compare parameter estimates in a post hoc fashion. This approach is statistically suboptimal and not always applicable. Here, we develop a simple extension of a popular fixed effects likelihood method in the context of codon-based evolutionary phylogenetic maximum likelihood testing, Contrast-FEL. It is suitable for identifying individual alignment sites where any among the K2 sets of branches in a phylogenetic tree have detectably different ω ratios, indicative of different selective regimes. Using extensive simulations, we show that Contrast-FEL delivers good power, exceeding 90% for sufficiently large differences, while maintaining tight control over false positive rates, when the model is correctly specified. We conclude by applying Contrast-FEL to data from five previously published studies spanning a diverse range of organisms and focusing on different evolutionary questions.  相似文献   
3.
1. Larvae of antlions (Neuroptera: Myrmeleontidae) and wormlions (Diptera: Vermileonidae) display a convergently evolved sit‐and‐wait hunting strategy of building pitfall traps in sandy areas. This study investigated a sympatric population of antlions and wormlions in the lowland rainforest of Borneo for substrate moisture, particle size and temperature preferences. It was hypothesised that these animals would show different preferences regarding these microhabitat traits. 2. The results showed that antlions had a higher aversion to moisture compared with wormlions, but that wormlions had a higher preference for small‐particle sand. Furthermore, thermal preferences in antlions and wormlions were significantly different, with antlions choosing higher temperatures. 3. The detected differences between antlions and wormlions might contribute to their niche partitioning in the mixed Bornean population and thus facilitate coexistence of these animals. It is possible that the hotter and dryer microhabitat edges are preferred by antlions.  相似文献   
4.
5.
The global distribution of extant reptiles is more limited than that of mammals or birds, with low reptilian species diversity at high latitudes. Central to this limited geographical distribution is the ectothermic nature of reptiles, which means that they generally become torpid at cold temperatures. However, here we report the first detailed telemetry from a leatherback turtle (Dermochelys coriacea) diving in cold water at high latitude. An individual equipped with a satellite tag that relayed temperature-depth profiles dived continuously for many weeks into sub-surface waters as cold as 0.4 °C. Global warming will likely increase the foraging range of leatherback turtles further into temperate and boreal waters.  相似文献   
6.
Intra‐cohort cannibalism is an example of a size‐mediated priority effect. If early life stages cannibalize slightly smaller individuals, then parents face a trade‐off between breeding at the best time for larval growth or development and predation risk from offspring born earlier. This game‐theoretic situation among parents may drive adaptive reproductive phenology toward earlier breeding. However, it is not straightforward to quantify how cannibalism affects seasonal egg fitness or to distinguish emergent breeding phenology from alternative adaptive drivers. Here, we devise an age‐structured game‐theoretic mathematical model to find evolutionary stable breeding phenologies. We predict how size‐dependent cannibalism acting on eggs, larvae, or both changes emergent breeding phenology and find that breeding under inter‐cohort cannibalism occurs earlier than the optimal match to environmental conditions. We show that emergent breeding phenology patterns at the level of the population are sensitive to the ontogeny of cannibalism, that is, which life stage is subject to cannibalism. This suggests that the nature of cannibalism among early life stages is a potential driver of the diversity of reproductive phenologies seen across taxa and may be a contributing factor in situations where breeding occurs earlier than expected from environmental conditions.  相似文献   
7.
8.
9.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   
10.
Most of the classical theory on species coexistence has been based on species‐level competitive trade‐offs. However, it is becoming apparent that plant species display high levels of trait plasticity. The implications of this plasticity are almost completely unknown for most coexistence theory. Here, we model a competition–colonisation trade‐off and incorporate trait plasticity to evaluate its effects on coexistence. Our simulations show that the classic competition–colonisation trade‐off is highly sensitive to environmental circumstances, and coexistence only occurs in narrow ranges of conditions. The inclusion of plasticity, which allows shifts in competitive hierarchies across the landscape, leads to coexistence across a much broader range of competitive and environmental conditions including disturbance levels, the magnitude of competitive differences between species, and landscape spatial patterning. Plasticity also increases the number of species that persist in simulations of multispecies assemblages. Plasticity may generally increase the robustness of coexistence mechanisms and be an important component of scaling coexistence theory to higher diversity communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号