首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2020年   1篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.

Background

Eosinophilia plays the major role in the pathogenesis of asthma and correlates with the up‐regulation of eotaxin, which, together with interleukin (IL)‐5, is important for differentiation, chemo‐attraction, degranulation, and survival of eosinophils in local tissue. In a previous study, we found that administration of lentivirus‐delivered short hairpin RNA (shRNA) to suppress the expression of IL‐5 inhibited airway inflammation. The present study aimed to investigate the role of eotaxin shRNA and the synergistic effect of eotaxin and IL‐5 shRNAs on airway inflammation in an ovalbumin (OVA)‐induced murine model of asthma.

Methods

Lentivirus‐delivered shRNAs were used to suppress the expression of eotaxin and/or IL‐5 in local tissue in an OVA‐induced murine asthma model.

Results

Intra‐tracheal administration of lentivirus containing eotaxin shRNA expressing cassette (eoSEC3.3) efficiently moderated the characteristics of asthma, including airway hyper‐responsiveness, cellular infiltration of lung tissues, and eotaxin and IL‐5 levels in bronchio‐alveolar lavage fluid. Administration of lentiviruses expressing IL‐5 or eotaxin shRNAs (IL5SEC4 + eoSEC3.3) also moderated the symptoms of asthma in a mouse model.

Conclusions

Local delivery of lentiviruses expressing IL‐5 and eotaxin shRNAs provides a potential tool in moderating airway inflammation and also has the potential for developing clinical therapy based on the application of shRNAs of chemokines and cytokines involved in T helper 2 cell inflammation and eosinophilia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
2.
Eotaxin is a CC chemokine with potent chemoattractant activity towards eosinophils. 15N NMR relaxation data have been used to characterize the backbone dynamics of recombinant human eotaxin. 15N longitudinal (R1) and transverse (R2) auto relaxation rates, heteronuclear 1H-15N steady-state NOEs, and transverse cross-relaxation rates (xy) were obtained at 30 °C for all resolved backbone secondary amide groups using 1 H-detected two-dimensional NMR experiments. Ratios of transverse auto and cross relaxation rates were used to identify NH groups influenced by slow conformational rearrangement. Relaxation data were fit to the extended model free dynamics formalism, yielding parameters describing axially symmetric molecular rotational diffusion and the internal dynamics of each NH group. The molecular rotational correlation time (m) is 5.09±0.02 ns, indicating that eotaxin exists predominantly as a monomer under the conditions of the NMR study. The ratio of diffusion rates about unique and perpendicular axes (D/D) is 0.81±0.02. Residues with large amplitudes of subnanosecond motion are clustered in the N-terminal region (residues 1–19), the C-terminus (residues 68–73) and the loop connecting the first two -strands (residues 30–37). N-terminal flexibility appears to be conserved throughout the chemokine family and may have implications for the mechanism of chemokine receptor activation. Residues exhibiting significant dynamics on the microsecond–millisecond time scale are located close to the two conserved disulfide bonds, suggesting that these motions may be coupled to disulfide bond isomerization.  相似文献   
3.
We have cloned and performed the first functional characterization of the chemokine receptor, CCR3, of Cynomolgus monkey (Macaca fascicularis). The deduced amino acid sequence of the cloned Cynomolgus CCR3 was found to be more similar to that of a previously-reported Rhesus (Macaca mulatta) CCR3 (99.4%) than that of a reported Cynomolgus CCR3 (98.0%). Stably-transfected Cynomolgus CCR3 bound human eotaxin (CCL11) with similar kinetics (Kd 240 pM) and was responsive to human CCR3 ligands (eotaxin [CCL11], eotaxin-2 [CCL24], and MCP4 [CCL13]) in Ca(2+) mobilization and chemotaxis assays, thus provides a useful alternative species model system for the analysis of modulators of eotaxin--CCR3 induced signaling and activation.  相似文献   
4.
Secretion of interleukin-4 (IL-4) by leukocytes is important for varied immune responses including allergic inflammation. Within eosinophils, unlike lymphocytes, IL-4 is stored in granules (termed specific granules) and can be rapidly released by brefeldin A (BFA)-inhibitable mechanisms upon stimulation with eotaxin, a chemokine that activates eosinophils. In studying eotaxin-elicited IL-4 secretion, we identified at the ultrastructural level distinct vesicular IL-4 transport mechanisms. Interleukin-4 traffics from granules via two vesicular compartments, large vesiculotubular carriers, which we term eosinophil sombrero vesicles (EoSV), and small classical spherical vesicles. These two vesicles may represent alternative pathways for transport to the plasma membrane. Loci of both secreted IL-4 and IL-4-loaded vesicles were imaged at the plasma membranes by a novel EliCell assay using a fluoronanogold probe. Three dimensional electron tomographic reconstructions revealed EoSVs to be folded, flattened and elongated tubules with substantial membrane surfaces. As documented with quantitative electron microscopy, eotaxin-induced significant formation of EoSVs while BFA pretreatment suppressed eotaxin-elicited EoSVs. Electron tomography showed that both EoSVs and small vesicles interact with and arise from granules in response to stimulation. Thus, this intracellular vesicular system mediates the rapid mobilization and secretion of preformed IL-4 by activated eosinophils. These findings, highlighting the participation of large tubular carriers, provide new insights into vesicular trafficking of cytokines.  相似文献   
5.
Objective: Chronic inflammation observed in obesity has been reported to be implicated in the development of atherosclerosis. We screened candidate chemokines that link chronic inflammation and obesity. Research Methods and Procedures: Japanese overweight (n = 39, BMI 28.7 ± 0.65 kg/m2) and normal‐weight (n = 24, BMI 22.3 ± 0.45 kg/m2) subjects were enrolled. Using antibody‐based protein microarray, spot intensities of monocyte chemoattractant protein (MCP)‐4, eotaxin, and eotaxin‐2 correlated with anthropometric parameters. We further measured serum concentration of these chemokines and mRNA levels in adipose tissues obtained from volunteers. Results: Serum MCP‐4 levels showed positive correlation with BMI (r = 0.318, p = 0.014), waist (r = 0.316, p = 0.018), and waist‐to‐hip ratio (WHR) (r = 0.264, p = 0.049). Furthermore, MCP‐4 correlated with homeostasis model assessment of insulin resistance (r = 0.392, p = 0.002), high‐sensitivity C‐reactive protein (hsCRP) (r = 0.350, p = 0.006). In step‐wise multiple regression analyses, hsCRP independently correlated with MCP‐4 levels. The expression of MCP‐4 mRNA in visceral adipose tissue positively correlates with BMI. Serum eotaxin levels correlate with BMI (r = 0.262, p = 0.045) and WHR (r = 0.383, p = 0.003). Serum eotaxin‐2 levels correlated with BMI (r = 0.464, p < 0.001), waist (r = 0.333, p = 0.017), and WHR (r = 0.278, p = 0.048). However, eotaxin and eotaxin‐2 levels did not show significant correlation with hsCRP. Discussion: Serum levels of MCP‐4, eotaxin, and eotaxin‐2, which belong to CC chemokine family and share CC chemokine receptor 3, correlated with BMI. These chemokines, especially MCP‐4, may be critical molecules that link obesity and chronic inflammation.  相似文献   
6.
The relationships between eosinophils and adipose tissues are involved in metabolic homeostasis. Eotaxin is a chemokine with potent effects on eosinophil migration. To clarify the mechanisms of eotaxin expression in adipose tissues, we examined the effects of fibroblast growth factor‐2 (FGF‐2) and interleukin‐4 (IL‐4) stimulation on eotaxin expression in adipose tissue‐derived stromal cells (ASCs), a type of adipocyte progenitor, in vitro. ASCs expressed eotaxin‐1 and did not express eotaxin‐2 or ‐3. Eotaxin‐1 expression was increased in a concentration‐dependent manner following FGF‐2 treatment. Additionally, ASCs expressed FGF receptor‐1 (FGFR‐1) and did not express FGFR‐2, ‐3, or ‐4. Eotaxin‐1 expression was inhibited in cells treated with the FGFR tyrosine kinase inhibitor and extracellular signal‐regulated kinase (ERK) inhibitor U0126, even in the presence of FGF‐2. Moreover, eotaxin‐1 expression was synergistically enhanced by combined treatment with FGF‐2 and IL‐4 and inhibited in the presence of U0126. Eotaxin‐1 expression induced by FGF‐2 and IL‐4 was involved in ERK activation via FGFR‐1 in ASCs. Upregulation of eotaxin expression in adipose tissues could increase eosinophil migration, thereby inducing IL‐4 secretion and activation of alternative macrophages and improving glucose homeostasis. These findings provide insights into the mechanisms through which eotaxin mediates metabolic homeostasis in adipose tissues and eosinophils.  相似文献   
7.
Mayer KL  Stone MJ 《Proteins》2003,50(2):184-191
The eotaxin group chemokines (eotaxin, eotaxin-2, and eotaxin-3) share only 35-41% sequence identity but are all agonists for the receptor CCR3. Here we present a detailed comparison between the backbone dynamics of these three chemokines. The dynamics of eotaxin-2 were determined from 15N NMR relaxation data and compared to those obtained previously for eotaxin and eotaxin-3. For all three chemokines, the majority of residues in the first two beta-strands and the alpha-helix show highly restricted motions on the subnanosecond time scale but there is dramatically higher flexibility in the N- and C-terminal regions and also substantial mobility for residues in the N-loop region and the third beta-strand. The latter two regions form a groove on the chemokine surface that is the likely binding site for the N-terminal region of the receptor. Taken together, the available data suggest a model in which conformational rearrangements of both the chemokine and the receptor are likely to occur during binding and receptor activation.  相似文献   
8.
9.
Eotaxin is a member of the chemokine family of about 40 proteins that induce cell migration. Eotaxin binds the CC chemokine receptor CCR3 that is highly expressed by eosinophils, and it is considered important in the pathology of chronic respiratory disorders such as asthma. The high resolution structure of eotaxin is known. The 74 amino acid protein has two disulfide bridges and shows a typical chemokine fold comprised of a core of three antiparallel beta-strands and an overlying alpha-helix. In this paper, we report the backbone dynamics of eotaxin determined through 15N-T1, T2, and [1H]-15N nuclear Overhauser effect heteronuclear multidimensional NMR experiments. This is the first extensive study of the dynamics of a chemokine derived from 600, 500, and 300 MHz NMR field strengths. From the T1, T2, and NOE relaxation data, parameters that describe the internal motions of eotaxin were derived using the Lipari-Szabo model free analysis. The most ordered regions of the protein correspond to the known secondary structure elements. However, surrounding the core, the regions known to be functionally important in chemokines show a range of motions on varying timescales. These include extensive subnanosecond to picosecond motions in the N-terminus, C-terminus, and the N-loop succeeding the disulfides. Analysis of rotational diffusion anisotropy of eotaxin and chemical exchange terms at multiple fields also allowed the confident identification of slow conformational exchange through the "30s" loop, disulfides, and adjacent residues. In addition, we show that these motions may be attenuated in the dimeric form of a synthetic eotaxin. The structure and dynamical basis for eotaxin receptor binding is discussed in light of the dynamics data.  相似文献   
10.
豚鼠气道炎症中Eotaxin基因表达的意义   总被引:3,自引:0,他引:3  
通过气管内滴注葡聚糖诱导豚鼠气道炎症,研究嗜酸细胞在气道炎症中的意义。用葡聚糖G200(5mg/kg)滴注形成气道炎症,进行支气管肺泡灌洗,通过RTPCR方法,检测气道炎症时肺匀浆Eotaxin基因的表达。结果可见,葡聚糖G200所致豚鼠肺损伤后Eotaxin的mRNA表达水平随葡聚糖G200刺激时间延长而明显升高(P<0.05),同时支气管肺泡灌洗液中白细胞数及上清液中Th2型细胞因子IL4也随之升高(P<0.05);试验中采用甲强龙琥珀酸钠抑制气道炎症,与盐水对照组比较P>0.05。可见,用葡聚糖G200进行气管滴注是形成气管炎症简单而实用的动物模型;Eotaxin在聚集、活化炎性细胞过程中起重要作用;糖皮质激素类药物能有效抑制Eotaxin的表达。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号