首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2017年   1篇
  2013年   3篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
《Chronobiology international》2013,30(6):1073-1086
Food entrainment of clock genes in the liver suggests that this organ may underlie a food entrained oscillator (FEO), which manifests under restricted feeding schedule (RFS). In order to test the importance of a functional liver for the expression of FEO, chronic CCl4-treated cirrhotic rats and oil-treated controls were entrained to RFS and drinking behavior was continuously monitored. After 20 d of free-running conditions, food access was restricted to 2 h, followed by a refeeding–fasting protocol to test persistence of anticipatory drinking. Present data show no differences between groups for the onset and intensity of anticipation during RFS. After RFS, however, cirrhotic rats exhibited a significantly longer free-running period and a delay and lower intensity of the persistence of activity under fasting conditions. Histology confirmed injury of the liver chronically treated with CCl4. Present data indicate that a dysfunctional liver due to chronic CCl4 does not prevent animals from exhibiting anticipatory activity but may promote metabolic derangement of the clock mechanisms of the suprachiasmatic nucleus and the FEO.  相似文献   
2.
Environmental contamination is a common cause of rapid evolution. Recent work has shown that Daphnia pulex, an important freshwater species, can rapidly evolve increased tolerance to a common contaminant, sodium chloride (NaCl) road salt. While such rapid evolution can benefit organisms, allowing them to adapt to new environmental conditions, it can also be associated with unforeseen tradeoffs. Given that exposure to environmental contaminants can cause circadian disruption, we investigated whether the circadian clock was affected by evolving a tolerance to high levels of road salt. By tracking the oscillations of a putative clock gene, period, we demonstrated that D. pulex express per mRNA with approximately 20‐hr oscillations under control conditions. This putative circadian rhythm was ablated in response to high levels of salinity; populations adapted to high NaCl concentrations exhibited an ablation of period oscillation. Moreover, we showed that while gene expression is increased in several other genes, including clock, actin, and Na+/K+‐ATPase, upon the adaptation to high levels of salinity, per expression is unique among the genes we tracked in that it is the only gene repressed in response to salt adaptation. These results suggest that rapid evolution of salt tolerance occurs with the tradeoff of suppressed circadian function. The resultant circadian disruption may have profound consequences to individuals, populations, and aquatic food webs by affecting species interactions. In addition, our research suggests that circadian clocks may also be disrupted by the adaptation to other environmental contaminants.  相似文献   
3.
Restricted access to food (from 12:00 to 14:00 h) produces a behavioral activation known as food anticipatory activity (FAA), which is a manifestation of the food entrained oscillator (FEO). Peripheral oscillators, especially in the liver, are thought to be part of the FEO. A variety of metabolic adaptations have been detected in the liver during the expression of this oscillator, including activation of mitochondrial respiration and changes in the cytoplasmic and mitochondrial redox states. Biological clocks are regulated by redox-sensitive factors. The present study explored the lipoperoxidative activity (LP) in the liver during the activity of the FEO. Conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS), with and without Fe2+-supplementation, were quantified in six subcellular fractions: whole homogenate, plasma membrane, mitochondria, microsomes, nucleus, and cytosol. The experimental protocol involved control groups of ad libitum fed and 24-h fasted rats, and groups under the restricted food schedule (RFS) which were sampled before FAA (08:00 h), during FAA (11:00 h) and after feeding (14:00 h). Clear differences in pro-oxidant activity was observed between ad libitum fed and 24-h fasted rats in almost all the subcellular fractions studied. RFS rats presented: CD levels more similar to the fasted rats, even at 14:00 h, after food presentation, and basal and Fe2+-supplemented TBARS levels tended to be lower than both controls, suggesting an increased antioxidant capacity associated with food restriction. In addition, a microarray analysis showed that several isoforms of peroxiredoxins, a family of antioxidant and hydrogen peroxide-catabolizing enzymes, were consistently up-regulated in each and every condition in which RFS was applied. Together, these data indicate a rheostatic adaptation of the liver in the handling of pro-oxidant reactions during the activity of the FEO.  相似文献   
4.
Daytime restricted feeding (DRF) promotes circadian adaptations in the metabolic processing of nutrients. We explored the hepatic gluconeogenic response in DRF rats by the temporal profiles of the following: (1) the activity of glucose 6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), as well as the periportal and pericentral distribution of PEPCK; (2) conversion of alanine to glucose; (3) glycemia and liver glycogen content; (4) presence of glycogen synthase (GYS) and its phosphorylated form (at Ser641, pGYS); (5) circulating levels of corticosterone, glucagon and insulin; (6) glucose-tolerance test; and (7) sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α). The results showed that DRF promoted: (1) a phase shift in G6Pase activity and an increase in PEPCK activity as well as a change of PEPCK from periportal to pericentral hepatocytes, (2) a net conversion of alanine to circulating glucose, (3) a decrease in glycemic values and a phase shift in the liver glycogen content, (4) a phase shift in GYS and an increase of pGYS, (5) an increase in the daily levels of corticosterone and glucagon, but a reduction in the levels of insulin, (6) normal glucose homeostasis in all groups and (7) an enhanced presence of SIRT1 and PGC-1α. It is proposed that the increased gluconeogenic in DRF group promotes synthesis of hepatic glycogen and the production of glucose. These results could be a modulation of the gluconeogenic process due to rheostatic adaptations in the endocrine, metabolic and timing regulation of liver and could be associated with the physiology of the food entrained oscillator.  相似文献   
5.
Summary

Periodic water releases from Beervlei Dam on the Groot River of the Gamtoos River System were planned to flush the riverine pools of brack water and replace the pools with better quality water which was used to flood irrigate lucerne lands. Fish collections were made in a small irrigation canal situated on the banks of the Groot River. Three fish species were collected. Results indicated that up to a total of 131 smallscale redfin minnows, Pseudobarbus asper, are removed from the system every five minutes at this one small water withdrawal site. Larger minnow specimens and carp, Cyprinus carpio, were entrained during high river flows. When the river flow was reduced there were higher catches of young of the year fish. The fish are carried with the pumped water, which is flood irrigated onto lucerne fields, resulting in stranding and eventual mortality. It is recommended that the use of suitable screens, such as wedge-wire screens, could reduce the number of fish removed from the system during these irrigation periods.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号