首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   10篇
  国内免费   1篇
  2024年   1篇
  2023年   4篇
  2022年   10篇
  2021年   11篇
  2020年   9篇
  2019年   3篇
  2018年   3篇
  2017年   13篇
  2016年   18篇
  2015年   7篇
  2014年   14篇
  2013年   14篇
  2012年   5篇
  2011年   6篇
  2009年   6篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1998年   8篇
  1997年   7篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
排序方式: 共有198条查询结果,搜索用时 140 毫秒
1.
Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White‐spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate‐like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a steady swimming trade off. J. Morphol. 274:1288–1298, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
2.
3.
Most previously published electromyographic (EMG) studies have indicated that the temporalis muscles in humans become almost electrically quiet during incisai biting. These data have led various workers to conclude that these muscles may contribute little to the incisai bite force. The feeding behavior and comparative anatomy of the incisors and temporalis muscles of certain catarrhine primates, however, suggest that the temporalis muscle is an important and powerful contributor to the bite force during incision. One purpose of this study is to analyze the EMG activity of the masseter and temporalis muscles in both humans and macaques with the intention of focusing on the conflict between published EMG data on humans and inferences of muscle function based on the comparative anatomy and behavior of catarrhine primates. The EMG data collected from humans in the present study indicate that, in five of seven subjects, the masseter,anterior temporalis, and posterior temporalis muscles are very active during apple incision (i.e., relative to EMG activity levels during apple and almond mastication). In the other two human subjects the EMG levels of these muscles are lower during incision than during mastication, but in no instance are these muscles ever close to becoming electrically quiet. The EMG data on macaques indicate that, in all six subjects, the masseter, anterior temporalis, and posterior temporalis muscles are very active during incision. These data are in general agreement with inferences on muscle function that have been drawn from the comparative anatomy and behavior of primates, but they do not agree with previous experimental data. The reason for this disagreement is probably due to differences in the experimental procedure. In previous studies subjects simply bit isometrically on their incisors and the resulting EMG pattern was compared to the pattern associated with powerful clenching in centric occlusion. In the present study the subjects incised into actual food objects, and the resulting EMG pattern was compared to the pattern associated with mastication of various foods. It is not surprising that these two procedures result in markedly different EMG patterns, which in turn result in markedly different interpretations of jaw-muscle function. In an attempt to explain the evolution of the postorbital septum in anthropoids, it has been suggested that the anterior temporalis is more active than the masseter during incision (Cachel, 1979). The human and macaque EMG data do not support this hypothesis; during incision, the two muscles show no consistent differences in humans and the masseter appears to be in fact more active than the anterior temporalis in macaques.  相似文献   
4.
5.
This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running.  相似文献   
6.
These experiments examined the effect of hypoxia and hyperoxia on ventilation, lactate concentration and electromyographic activity during an incremental exercise test in order to determine if coincident chances in ventilation and electromyographic activity occur during an incremental exercise test, despite an enhancement or reduction of peripheral chemoreceptor activity. In addition, these experiments were completed to determine if electromyographic activity and ventilation are enhanced or reduced in response to the inspiration of oxygen-depleted and oxygen-enriched air, respectively. Seven subjects performed three incremental exercise tests, until volitional exhaustion was achieved, while inspiring air with a fractional concentration of oxygen of either 66%, 21% or 17%. In addition, another single subject completed two tests while inspiring air with a fractional concentration of either 17% or 21%. During the tests, ventilation, mixed expired oxygen and carbon dioxide, arterialized venous blood and the electromyographic activity from the vastus lateralis were sampled. From these values ventilation, electromyographic and lactate thresholds were detected during normoxia, hypoxia and hyperoxia. The results showed that although ventilation and lactate concentration were significantly less during hyperoxia as compared to normoxia or hypoxia, the carbon dioxide production values were not significantly different between the normoxic, hypoxic and hyperoxic conditions. For a particular condition, the time, carbon dioxide production and oxygen consumption values that corresponded to the ventilation and electromyographic thresholds were not significantly different, but the values corresponding to the lactate threshold were significantly less than those for the electromyographic and ventilation thresholds. Comparisons between the three conditions showed that the time, carbon dioxide production and oxyen consumption values corresponding to each of these thresholds were not significantly different. These findings have led us to conclude that the changes in lactate concentration observed during exercise may not be directly related to the fractional concentration of inspired oxygen, and that the peripheral chemoreceptors may not be the sole mediators of the first ventilatory threshold. It is suggested that this threshold may be mediated by an increase in neural activity originating from higher motor centers or the exercising limbs, induced in response to the need to progressively recruit fast twitch muscle fibers as exercise power output is increased and as individual muscle fibers begin to fatigue.  相似文献   
7.
The purpose of this study was to determine the intratester reliability of surface electromyography (EMG) assessment of the gluteus medius muscle in healthy people and people with chronic nonspecific low back pain (CNLBP) during barefoot walking. Gluteus medius muscle activity was measured twice in 40 people without and 30 people with CNLBP approximately 7 days apart. Walking gluteus medius muscle activity was normalised to maximal voluntary isometric contractions during side-lying hip abduction with manual resistance. Good intratester reliability (ICC > 0.75) was found for mean, peak, and peak to peak amplitude for healthy people. Only mean amplitude demonstrated good intratester reliability in those with CNLBP. Peak amplitude and peak to peak amplitude of the gluteus medius muscle of those with CNLBP, and the time of peak amplitude in both groups, demonstrated moderate reliability (ICC ranged from 0.50 to 0.58). Moderate to large standard error of measurement and minimal detectable change values were reported for outcome measurements. These results suggest that potentially large levels of random error can occur between sessions. Future research can build on this study for those with pathology and attempt to establish change values for EMG that are clinically meaningful.  相似文献   
8.
《IRBM》2020,41(1):18-22
ObjectivesElectromyography (EMG) is recording of the electrical activity produced by skeletal muscles. The classification of the EMG signals for different physical actions can be useful in restoring some or all of the lost motor functionalities in these individuals. Accuracy in classifying the EMG signal indicates efficient control of prosthesis.Material and methodsThe flexible analytic wavelet transform (FAWT) is used for classification of surface electromyography (sEMG) signals for identification of physical actions. FAWT is an efficient method for decomposition of sEMG signal into eight sub-bands, features namely neg-entropy, mean absolute value (MAV), variance (VAR), modified mean absolute value type 1 (MAV1), waveform length (WL), simple square integral (SSI), Tsallis entropy, integrated EMG (IEMG) are extracted from the sub-bands. Extracted features are fed into an extreme learning machine (ELM) classifier with sigmoid activation function.ResultsComprehensive experiments are conducted on the input sEMG signals and the accuracy, sensitivity and specificity scores are used for performance measurement. Experiments showed that among all sub-bands, the seventh sub-band provided the best performance where the recorded accuracy, sensitivity and specificity values were 99.36%, 99.36% and 99.93%, respectively. The comparison results showed best efficiency of proposed method as compared to other methods on the same dataset.ConclusionThis paper investigates the usage of the FAWT and ELM on sEMG signal classification. The results show that the proposed method is quite efficient in classification of the sEMG signals. It is also observed that the seventh sub-band of the FAWT provides the best discrimination property. In the future works, recent wavelet transform methods will be used for improving the classification performance.  相似文献   
9.
The Nordic Hamstring Exercise (NHE) has been introduced as a training tool to improve the efficiency of eccentric hamstring muscle contraction. The aim of this study was to perform a biomechanical analysis of the NHE. Eighteen participants (20.4 ± 1.9 years) performed two sets of five repetitions each of the NHE and maximal eccentric voluntary contraction (MEVC) of the knee flexors on an isokinetic dynamometer whilst knee angular displacement and electrical activity (EMG) of biceps femoris were measured. EMG was on average higher during the NHE (134.3% of the MEVC). During the forward fall of the NHE, the angle at which a sharp increase in downward velocity occurred varied between 47.9 and 80.5 deg, while the peak knee angular velocity (pVelocity) varied between 47.7 and 132.8 deg s?1. A significant negative correlation was found between pVelocity and peak EMG (r = ?0.62, p < 0.01) and EMG at 45 deg (r = ?0.75, p < 0.01) expressed as a percentage of peak MEVC EMG. Some of the variables analyzed exhibited good to excellent levels of intra- and inter-session reliability. This type of analysis could be used to indirectly monitor the level of eccentric strength of the hamstring muscles while performing the NHE and potentially any training- or injury-related changes.  相似文献   
10.
The aim of this study was to verify the effects of induced masseter-muscle pain on the amplitude of muscle activation, symmetry and coactivation of jaw- and neck-muscles during mastication. Twenty-eight male volunteers, mean age ± SD 20.6 ± 2.0 years, participated in this study. Surface electromyography of the masseter and sternocleidomastoid (SCM) muscles was performed bilaterally during mastication of a gummy candy before and after injections of monosodium glutamate solution and isotonic saline solution. As a result, we observed a decrease in the amplitude of activation of the masseter muscle on the working side (p = 0.009; d = 0.34) and a reduction in the asymmetry between the working and the balancing side during mastication (p = 0.007; d = 0.38). No changes were observed either on the craniocervical electromyographic variables. In conclusion, experimentally induced pain reduced the masseter muscle activation on the working side, thereby reducing the physiological masseters’ recruitment asymmetry between the two sides during mastication. No effects on SCM activity were detected. These results may partly explain the initial maladaptative changes underlying TMD conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号