首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   30篇
  国内免费   1篇
  2023年   3篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   9篇
  2017年   9篇
  2016年   7篇
  2015年   7篇
  2014年   12篇
  2013年   13篇
  2012年   6篇
  2011年   9篇
  2010年   12篇
  2009年   16篇
  2008年   10篇
  2007年   9篇
  2006年   9篇
  2005年   8篇
  2004年   7篇
  2003年   11篇
  2002年   4篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   6篇
  1997年   3篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
1.
2.
Summary We study the leg morphology and feeding postures of two subspecies of the Blue Tit (Parus caeruleus; Tenerife island and the Iberian Peninsula) and the Coal Tit (Parus ater; Iberian Peninsula). We search for evidence supporting the hypothesis of convergent evolution in morphological and ecological traits and we discuss the role of ecomorphological hypotheses as predictors of foraging differences at the intraspecific level. To overcome the problems introduced by environmental characteristics not related to locomotion and competition, we make observations under controlled situations to manage food quality and food access. We determine that the island Blue Tit has a longer tarsometatarsus, larger foot span and a more proximal insertion of the tibialis cranialis muscle (flexor of the tarsometatarsus) than the mainland Blue Tit. These morphological differences are consistent with the more frequent use of hanging and clinging head-up postures by the Iberian Blue Tit. Several ecomorphological hypotheses obtained at the interspecific level with other taxa, have proved to be of high predictive value for explaining ecological differences considering morphological evolution. The Tenerife Blue Tit and the Iberian Coal Tit clearly show close convergence in both feeding postures and leg structure, although some differences in morphology were found between these two species. Convergence in foraging methods between the island Blue Tit and the mainland Coal Tit can be explained without considering current interspecific competition as a determinant of niche space.  相似文献   
3.
Summary Do birds that migrate over longer distances have more pointed wings than more sedentary birds? Within several bird genera, species differ considerably in their migration distances. This makes it possible to study the extent to which different taxa show similar morphological solutions to common selection pressures. I selected 14 species, two from each of seven passerine genera, to maximize within-genus differences in migration distance. Wing lengths and the lengths of eight primary feathers around the wing tip were measured to assess wing length and shape. Primary lengths were transformed to take into account the allometric relationship between the length of each feather and wing length and then collapsed into summary measures of shape by principal component analysis. I used the method of independent contrasts to address the effects of phylogeny. Wing length showed no relationship with migration distance. There was a correlation between migration distance and wing shape. It is concluded that long-distance migration has resulted in convergent morphological evolution of long distal and short proximal primaries, resulting in wing tips close to the leading edge of the wing.  相似文献   
4.
Some probe-foraging birds locate their buried prey by detecting mechanical vibrations in the substrate using a specialized tactile bill-tip organ comprising mechanoreceptors embedded in densely clustered pits in the bone at the tip of their beak. This remarkable sensory modality is known as ‘remote touch’, and the associated bill-tip organ is found in probe-foraging taxa belonging to both the palaeognathous (in kiwi) and neognathous (in ibises and shorebirds) clades of modern birds. Intriguingly, a structurally similar bill-tip organ is also present in the beaks of extant, non-probing palaeognathous birds (e.g. emu and ostriches) that do not use remote touch. By comparison with our comprehensive sample representing all orders of extant modern birds (Neornithes), we provide evidence that the lithornithids (the most basal known palaeognathous birds which evolved in the Cretaceous period) had the ability to use remote touch. This finding suggests that the occurrence of the vestigial bony bill-tip organ in all modern non-probing palaeognathous birds represents a plesiomorphic condition. Furthermore, our results show that remote-touch probe foraging evolved very early among the Neornithes and it may even have predated the palaeognathous–neognathous divergence. We postulate that the tactile bony bill-tip organ in Neornithes may have originated from other snout tactile specializations of their non-avian theropod ancestors.  相似文献   
5.
Morphology of extant felids is regarded as highly conservative. Most previous studies have focussed on skull morphology, so a vacuum exists about morphofunctional variation in postcranium and its role in structuring ensembles of felids in different continents. The African felid ensemble is particularly rich in ecologically specialized felids. We studied the ecomorphology of this ensemble using 31 cranial and 93 postcranial morphometric variables measured in 49 specimens of all 10 African species. We took a multivariate approach controlling for phylogeny, with and without body size correction. Postcranial and skull + postcranial analyses (but not skull‐only analyses) allowed for a complete segregation of species in morphospace. Morphofunctional factors segregating species included body size, bite force, zeugopodial lengths and osteological features related to parasagittal leg movement. A general gradient of bodily proportions was recovered: lightly built, long‐legged felids with small heads and weak bite forces vs. the opposite. Three loose groups were recognized: small terrestrial felids, mid‐to‐large sized scansorial felids and specialized Acinonyx jubatus and Leptailurus serval. As predicted from a previous study, the assembling of the African felid ensemble during the Plio‐Pleistocene occurred by the arrival of distinct felid lineages that occupied then vacant areas of morphospace, later diversifying in the continent.  相似文献   
6.
An ecomorphological method was developed, with a focus on predation functions, to define functional groups in the Celtic Sea fish community. Eleven functional traits, measured for 930 individuals from 33 species, led to 11 functional groups. Membership of functional groups was linked to body size and taxonomy. For seven species, there were ontogenetic changes in group membership. When diet composition, expressed as the proportions of different prey types recorded in stomachs, was compared among functional groups, morphology‐based predictions accounted for 28–56% of the interindividual variance in prey type. This was larger than the 12–24% of variance that could be explained solely on the basis of body size.  相似文献   
7.
The performance of an organism in its environment frequently depends more on its composite phenotype than on individual phenotypic traits. Thus, understanding environmental adaptation requires investigating patterns of covariation across functionally related traits. The replicated adaptive radiations of Greater Antillean Anolis lizards are characterized by ecological and morphological convergence, thus, providing an opportunity to examine the role of multiple phenotypes in microhabitat adaptation. Here, we examine integrated claw and toepad morphological evolution in relation to habitat partitioning across the adaptive radiations of Greater Antillean anoles. Based on analysis of 428 specimens from 57 species, we found that different aspects of claw morphology were associated with different perch dimensions, with claw height positively associated with perch diameter and claw curvature positively associated with perch height. Patterns of integration also varied across claw and toepad traits, likely driven by correlative selection for performance on smoother and rougher substrates. Finally, rates of evolution differed between claw and toepad traits, with claw length evolving faster than all other traits despite having no predicted functional importance. Our results highlight the multivariate nature of phenotypic adaptation and suggest that phenotypic integration across Greater Antillean anoles is driven by fine‐scale correlative selection based on structural habitat specialization.  相似文献   
8.
To understand the evolution of ecological niches it is important to know whether niche evolution is constrained by phylogeny. We approached this question for Sylvia warblers by testing if closely related species are more similar in 20 ecologically relevant morphological traits than distantly related species. Phylogenetic relatedness was quantified using a molecular phylogeny based on the mitochondrial cytochrome b gene. By Principal Component Analysis (PCA) two major niche axes were extracted. We tested the individual ecomorphological traits and the positions of the species on the PCA axes for phylogenetic effects using Mantel tests. The results demonstrated small but significant phylogenetic effects only for the length of the middle toe, a trait probably correlated with locomotion. In general, however, phylogenetic effects were very weak. This suggests that ecological niches in passerine birds have the potential to evolve rapidly and are not subject to major phylogenetic constraints.  相似文献   
9.
Abstract.— Species of Anolis lizards that use broad substrates have long legs, which provide enhanced maximal sprint speed, whereas species that use narrow surfaces have short legs, which permit careful movements. We raised hatchling A. sagrei in terraria provided with only broad or only narrow surfaces. At the end of the experiment, lizards in the broad treatment had relatively longer hindlimbs than lizards in the narrow treatment. These results indicate that not only is hindlimb length a plastic trait in these lizards, but that this plasticity leads to the production of phenotypes appropriate to particular environments. Comparison to hindlimb lengths of other Anolis species indicates that the range of plasticity is limited compared to the diversity shown throughout the anole radiation. Nonetheless, this plasticity potentially could have played an important role in the early stages of the Caribbean anole radiation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号