首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   1篇
  2023年   2篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  2000年   2篇
排序方式: 共有26条查询结果,搜索用时 156 毫秒
1.
Decomposition is a key process driving carbon and nutrient cycling in ecosystems worldwide. The home field advantage effect (HFA) has been found to accelerate decomposition rates when litter originates from “home” when compared to other (“away”) sites. It is still poorly known how HFA plays out in tropical, riparian forests, particularly in forests under restoration. We carried out three independent reciprocal litter transplant experiments to test how litter quality, soil nutrient concentrations, and successional stage (age) influenced HFA in tropical riparian forests. These experimental areas formed a wide gradient of soil and litter nutrients, which we used to evaluate the more general hypothesis that HFA varies with dissimilarity in soil nutrients and litter quality. We found that HFA increased with soil nutrient dissimilarity, suggesting that litter translocation uncouples relationships between decomposers and litter characteristics; and with litter N:P, indicating P limitation in this system. We also found negative HFA effects at a site under restoration that presented low decomposer ability, suggesting that forest restoration does not necessarily recover decomposer communities and nutrient cycling. Within each of the independent experiments, the occurrence of HFA effects was limited and their magnitude was not related to forest age, nor soil and litter quality. Our results imply that HFA effects in tropical ecosystems are influenced by litter nutrient limitation and soil nutrient dissimilarity between home and away sites, but to further disentangle major HFA drivers in tropical areas, a gradient of dissimilarity between litter and soil properties must be implemented in future experimental designs.  相似文献   
2.
1. In brown food webs of the forest floor, necromass (e.g. insect carcasses and frass) falling from the canopy feeds both microbes and ants, with the former decomposing the homes of the latter. In a tropical litter ant community, we added necromass to 1 m2 plots, testing if it added as a net food (increasing ant colony growth and recruitment) or destroyer of habitat (by decomposing leaf litter). 2. Maximum, but not mean, colony growth rates were higher on +food plots. However, neither average colony size, nor density was higher on +food plots. In contrast, +food plots saw diminished availability of leaf litter and higher microbial decomposition of cellulose, a main component of the organic substrate that comprises litter habitat. 3. Furthermore, necromass acted as a limiting resource to the ant community only when nest sites were supplemented on +food plots in a second experiment. Many of these +food +nest plots were colonised by the weedy species Wasmannia auropunctata. 4. Combined, these results support the more food–less habitat hypothesis and highlight the importance of embedding studies of litter ant ecology within broader decomposer food web dynamics.  相似文献   
3.
Calliphorid blowflies perform an essential ecosystem service in the consumption, recycling and dispersion of carrion nutrients and are considered amongst the most important functional groups in an ecosystem. Some species are of economic importance as facultative agents of livestock myiasis. The interspecific ecological differences that facilitate coexistence within the blowfly community are not fully understood. The aim of this work was to quantify differences in habitat use by calliphorid species. Thirty traps were distributed among three habitats at two sites in southwest England for collections made during March–August 2016. A total of 17 246 specimens were caught, of which 2427 were Lucilia sericata, 51 Lucilia richardsi, 6580 Lucilia caesar, 307 Lucilia ampullacea, 4881 Calliphora vicina and 2959 Calliphora vomitoria (all: Diptera: Calliphoridae). Lucilia sericata was the dominant species in open habitats, whereas L. caesar was the most abundant species in shaded habitats. Calliphora specimens were more abundant in the cooler months. These findings suggest that Calliphora and Lucilia species show strong temporal segregation mediated by temperature, and that species of the genus Lucilia show differences in the use of habitats that are likely to be driven by differences in humidity tolerance and light intensity. These factors in combination result in effective niche partitioning.  相似文献   
4.
Throughout evolution, wood-decaying fungi have adapted to different woody plants, resulting in wide species diversity. Dacrymycetes, which are brown-rot fungi and include host-recurrent species, are useful for studying fungal adaptation to host trees. When estimating the decay abilities of basidiomycetes, the nuclear phases of the mycelium should be considered, since dikaryons are thought to be more efficient wood-decayers than monokaryons; however, the difference in their physiological performances remains largely untested. In this study, we verified the decay capabilities of dikaryotic and monokaryotic mycelia and tested the hypothesis that the host tree-recurrence of wood-decaying fungi results from their resource utilization in each host wood. The mass loss caused by eight dacrymycetous species from wood of four tree species was investigated in pure cultures. The decomposition ability of dikaryons was greater than that of monokaryons in these experiments. Dikaryotization is expected to raise certain physiological parameters, such as the quantity and variety of wood-decomposing enzymes, thus enhancing the decomposition rate of wood decomposers. The high decomposition ability of dikaryons suggests their superiority over monokaryons to survive under natural conditions. All dacrymycetous strains caused high mass loss from Pinus wood, the main host tree of Dacrymycetes. However, most of the individual tested strains did not cause the greatest mass loss from the wood of their original host group. This result suggested that host-recurrence can be partly explained by resource utilization, but it is likely that other micro-organisms and abiotic factors also affect host-recurrence in the field environment.  相似文献   
5.
6.
Global change may affect the structure and functioning of decomposer food webs through qualitative changes in freshly fallen litter. We analyzed the predicted effects of a changing environment on a dynamic model of a donor‐controlled natural decomposer ecosystem near Wekerom, the Netherlands. This system consists of fungi, bacteria, fungivores, bacterivores and omnivores feeding on microbiota and litter as well. The model concentrates on carbon and nitrogen flows through the trophic niches that define this decomposer system, and is designed to predict litter masses and abundances of soil biota. For modeling purposes, the quality of freshly fallen leaf litter is defined in terms of nitrogenous and non‐nitrogenous components, of which refractory and labile forms are present. The environmental impacts of elevated CO2, enhanced UV‐B and eutrophication, each with their own influence on leaf litter quality, are studied. The model predicts steady‐state dynamics exclusively, for all three scenarios. Environmental changes impact most demonstratively on the highest trophic niches, and affect microbiotic abundances and litter decomposition rates to a lesser extent. We conclude that the absence of trophic cascade effects may be attributed to weak trophic links, and that non‐equilibrium dynamics occurring in the system are generally because of encounter rates based on fractional substrate densities in the litter. We set out a number of experimentally testable hypotheses that may improve understanding of ecosystem dynamics.  相似文献   
7.
8.
9.
发酵床猪粪腐解菌群筛选   总被引:1,自引:1,他引:0  
在浙江省安吉县采集了相邻的天然灌木林和板栗林土壤,分析土壤水溶性碳(WSOC)、微生物生物量碳(MBC)、易氧化碳(ROC)、水溶性有机氮(WSON)和微生物生物量氮(MBN),并利用核磁共振方法分析土壤总有机碳的波谱特征,研究天然灌木林改造成板栗林对土壤碳库和氮库的影响.结果表明: 天然灌木林改造成板栗林后,土壤中的碱解氮、有效磷和速效钾显著增加,而WSOC、MBC、ROC、WSON和MBN显著下降.天然灌木林和板栗林土壤有机碳以烷基碳和烷氧碳为主.天然灌木林改造成板栗林后,土壤有机碳中的烷氧碳和羰基碳比例显著下降,而烷基碳和芳香碳比例以及A/O-A值和芳香度均显著增加.天然灌木林改造成板栗林并长期集约经营后,土壤活性碳库和氮库含量均显著下降,而土壤碳库的稳定性显著增加.  相似文献   
10.
It is important to know the contributions of bacteria and fungi to decomposition in connection with both the structure of the food web and the functioning of the ecosystem. However, the extent of the competition between these groups of organisms is largely unknown. The bacterial influence on fungal growth in a soil system was studied by applying three different bacterial inhibitors – bronopol, tylosin and oxytetracycline – in a series of increasing concentrations, and comparing the resulting bacterial and fungal growth rates measured using leucine and acetate-in-ergosterol incorporation, respectively. Direct measurements of growth showed that fungi increased after adding inhibitors; the level of increase in fungal growth corresponded to that of the decrease in bacterial growth, irrespective of the bacterial inhibitor used. Similar antagonistic effects of the bacteria on fungal growth were also found after adding the bacterial inhibitors together with additional substrate (alfalfa or straw plant material). The resulting responses in bacterial and fungal growth indirectly indicated that the negative interaction between fungi and bacteria was mostly attributable to exploitation competition. The results of this study also emphasize the increased sensitivity of using growth-related, instead of biomass-based, measurements when studying bacterial and fungal interactions in soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号