首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2011篇
  免费   147篇
  国内免费   29篇
  2024年   1篇
  2023年   27篇
  2022年   27篇
  2021年   72篇
  2020年   82篇
  2019年   77篇
  2018年   70篇
  2017年   42篇
  2016年   41篇
  2015年   51篇
  2014年   69篇
  2013年   158篇
  2012年   73篇
  2011年   80篇
  2010年   71篇
  2009年   63篇
  2008年   94篇
  2007年   94篇
  2006年   89篇
  2005年   77篇
  2004年   84篇
  2003年   69篇
  2002年   93篇
  2001年   102篇
  2000年   82篇
  1999年   60篇
  1998年   59篇
  1997年   31篇
  1996年   33篇
  1995年   16篇
  1994年   20篇
  1993年   39篇
  1992年   18篇
  1991年   18篇
  1990年   6篇
  1989年   18篇
  1988年   20篇
  1987年   6篇
  1986年   10篇
  1985年   9篇
  1984年   9篇
  1983年   3篇
  1982年   11篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
排序方式: 共有2187条查询结果,搜索用时 406 毫秒
1.
2.
This lecture is devoted to the relative contribution of various levels of regulation of the actin cytoskeleton functioning in the cell. Regulation at the levels of gene expression, mRNA and protein synthesis and stability, processes of actin polymerization/depolymerization and actin structures reorganization is briefly considered. Novel information about the pathways of signal transduction to the actin cytoskeleton with the involvement of Arp2/3 complex and RIC proteins is highlighted.  相似文献   
3.
The family of flaviviruses is one of the most medically important groups of emerging arthropod-borne viruses. Host cell cytoskeletons have been reported to have close contact with flaviviruses during virus entry, intracellular transport, replication, and egress process, although many detailed mechanisms are still unclear. This article provides a brief overview of the function of the most prominent flaviviruses-induced or-hijacked cytoskeletal structures including actin, microtubules and intermediate filaments, mainly focus on infection by dengue virus, Zika virus and West Nile virus. We suggest that virus interaction with host cytoskeleton to be an interesting area of future research.  相似文献   
4.
The aim of the study was to explore the mechanism of mesenchymal stem cell‐derived exosomes (MSC‐EXO) to protect against experimentally induced pulmonary hypertension (PH). Monocrotaline (MCT)‐induced rat model of PH was successfully established by a single intraperitoneal injection of 50 mg/kg MCT, 3 weeks later the animals were treated with MSC‐EXO via tail vein injection. Post‐operation, our results showed that MSC‐EXO could significantly reduce right ventricular systolic pressure (RVSP) and the right ventricular hypertrophy index, attenuate pulmonary vascular remodelling and lung fibrosis in vivo. In vitro experiment, the hypoxia models of pulmonary artery endothelial cell (PAEC) and pulmonary vascular smooth muscle cell (PASMC) were used. We found that the expression levels of Wnt5a, Wnt11, BMPR2, BMP4 and BMP9 were increased, but β‐catenin, cyclin D1 and TGF‐β1 were decreased in MSC‐EXO group as compared with MCT or hypoxia group in vivo or vitro. However, these increased could be blocked when cells were transfected with Wnt5a siRNA in vitro. Taken together, these results suggested that the mechanism of MSC‐EXO to prevent PH vascular remodelling may be via regulation of Wnt5a/BMP signalling pathway.  相似文献   
5.
Trafficking protein particle complex 9 (TRAPPC9) is a major subunit of the TRAPPII complex. TRAPPC9 has been reported to bind nuclear factor κB kinase subunit β (IKKβ) and NF-kB-inducing kinase (NIK) where it plays a role in the canonical and noncanonical of nuclear factor-κB (NF-kB) signaling pathways, receptively. The role of TRAPPC9 in protein trafficking and cytoskeleton organization in osteoclast (OC) has not been studied yet. In this study, we examined the mRNA expression of TRAPPC9 during OC differentiation. Next, we examined the colocalization of TRAPPC9 with cathepsin-K, known to mediate OC resorption suggesting that TRAPPC9 mediates the trafficking pathway within OC. To identify TRAPPC9 protein partners important for OC-mediated cytoskeleton re-organization, we conducted immunoprecipitation of TRAPPC9 in mature OCs followed by mass spectrometry analysis. Our data showed that TRAPPC9 binds various protein partners. One protein with high recovery rate is L-plastin (LPL). LPL localizes at the podosomes and reported to play a crucial role in actin aggregation thereby actin ring formation and OC function. Although the role of LPL in OC-mediated bone resorption has not fully reported in detail. Here, first, we confirmed the binding of LPL to TRAPPC9 and, then, we investigated the potential regulatory role of TRAPPC9 in LPL-mediated OC cytoskeleton reorganization. We assessed the localization of TRAPPC9 and LPL in OC and found that TRAPPC9 is colocalized with LPL at the periphery of OC. Next, we determined the effect of TRAPPC9 overexpression on LPL recruitment to the actin ring using a viral system. Interestingly, our data showed that TRAPPC9 overexpression promotes the recruitment of LPL to the actin ring when compared with control cultures. In addition, we observed that TRAPPC9 overexpression reorganizes actin clusters/aggregates and regulates vinculin recruitment into the OC periphery to initiate podosome formation.  相似文献   
6.
《Developmental cell》2023,58(15):1399-1413.e5
  1. Download : Download high-res image (260KB)
  2. Download : Download full-size image
  相似文献   
7.
Ultrastructure, biochemistry and 5S rRNA sequences link tracheophytes, bryophytes and charalean green algae, but the precise interrelationships between these groups remain unclear. Further major clarification now awaits primary sequence data. These are also needed to determine directionality in possible evolutionary trends within the bryophytes, but are unlikely to overturn current schemes of classification or phylogeny. Comparative ultrastructural studies of spermatogenesis, sporogenesis, the cytoskeleton and plastids reinforce biochemical and morphogenetic evidence for the wide phyletic discontinuities between mosses, hepatics and hornworts, and also rule out direct lines of descent between them. Direct ancestral lineages from charalean algae to bryophytes and to tracheophytes are also unlikely. EM studies of gametophyte/sporophyte junctions, plus immunological investigations of bryophyte cytoskeletons, are likely to accentuate the differences between mosses, hepatirs and hornworts. Other priorities for systematics include elucidation of oil body ultrastructure, analysis of the changes in nuclear proteins during spermatogenesis and a detailed comparison of bryophyte and charalean plastids. The combined evidence from ultrastrueture, biochemistry, morphology and morphogenesis warrants general acceptance of the polyphyletic origin of the bryophytes. Ultrastructural attributes should be more widely used in bryophyte systematics.  相似文献   
8.
A purified head fraction was prepared from bovine epididymal spermatozoa and was utilized to identify the solubility characteristics and major polypeptide components of the postacrosomal sheath. Sperm heads extracted in nonionic-detergent-containing or high-salt-containing solutions retained an intact postacrosomal sheath, but it was readily solubilized by high pH extraction solutions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major polypeptide of 58,000 daltons (58-kD) in the high pH extract solution. Antibodies to the 58-kD polypeptide specifically reacted with the postacrosomal segment by immunofluorescence and by electron microscopic immunohistochemistry were shown to bind the postacrosomal sheath. We conclude that this 58-kD polypeptide is a constituent of the postacrosomal sheath and that its distribution is restricted to the postacrosomal segment.  相似文献   
9.
Summary In order to examine the possibility of parathyroid hormone-mediated ultrastructural rearrangements in target epithelium, isolated canine renal proximal tubular cells were grown on a collagen-coated semipermeable membrane in a defined medium. Scanning and transmission electron microscopy of these monolayers revealed abundant microvilli. Exposure of the proximal tubular cells to parathyroid hormone resulted in a biphasic changes involving: (1) dramatic shortening and rarefaction of microvilli within 1 min; and (2) recovery of microvillar topography after 5 min. A similar shortening of microvilli was observed following exposure to ionomycin, whereas incubation with cyclic AMP resulted in an elongation of microvilli. Parathyroid hormone stimulated cyclic AMP production and increased cytoplasmic free calcium concentration in cultured proximal tubular cells. Pretreatment of cells with a calmodulin inhibitor abolished the effect of parathyroid hormone on brush border topography. Shortening of microvilli was associated with a disappearance of microvillar core filaments. Staining of F-actin with fluoresceinphalloidin showed that parathyroid hormone resulted in fragmentation of stress fibers. It is concluded that parathyroid hormoneinduced cell activation involves cytoplasmic-free calcium, calmodulin, and the cytoskeleton.  相似文献   
10.
Locke M 《Tissue & cell》1985,17(6):901-921
Epidermal cells in Calpodes and other insects form basal processes or feet that at first extend axially and later shorten at the same time as the larval segment shortens to the pupal shape. The feet grow into spaces at the surfaces of other cells to make a basal interlacing meshwork of cellular extensions that are combined mechanically by their desmosomal attachments to cell bodies above and to the basal lamina below. Microtubules and microfilaments are linked to these junctions by a reticular fibrous matrix. Gap junctions on the feet may couple cells that are several cell bodies removed from one another. The meshwork is also a sieve separating the hemolymph from the spaces between cells to form an intercellular compartment. Entry to the intercellular compartment is through the sieve made by the negatively charged basolateral cell surfaces that can prevent the entry of positively charged molecules such as cationic ferritin. As the cells become columnar, coincident with the metamorphic change in segment shape, the feet shorten and pack more densely together. At this time the basal lamina buckles axially as if responding to contraction of the feet. Segment shape change involves cell rearrangement and relative cell movement, necessitating the transient loss of plasma membrane plaque attachments to the cuticle apically and the loss of junctions laterally. Gap junctions involute in characteristic vacuoles. The metamorphic reduction in cell surface area coincides with the loss of basolateral membrane in smooth tubes and vesicles and the turnover of the apical surface in multivesicular bodies. New apical plasma membrane plaques and new lateral and basal junctions stabilize the cells in their pupal positions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号