首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  2019年   1篇
  2016年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
In this paper, the effect of commonly used food sweetener (sodium cyclamate) on the proliferation and differentiation of osteoblasts has been researched. The morophology change of osteoblasts was investigated by confocal laser scanning microscopy. Cell viability was studied by MTT analysis. BMP2 expression was analyzed by western blot and immunofluorescence. Mineralization ability of osteoblasts was researched by using alizarin red staining method. The results indicate that a very low concentration (0.06?μM) of sodium cyclamate can curle and fold microfilament and microtubule of osteoblasts. The increase addition of sodium cyclamate resulted significantly decrease of cells viability. The expression of bone morphogenetic protein-2 (BMP2) was seriously suppressed by sodium cyclamate. Alizarin Red staining experiment revealed that sodium cyclamate decreased the mineralization ability of osteoblasts. The present results suggest that sodium cyclamate can seriously inhibit the proliferation and differentiation of osteoblasts.  相似文献   
2.
A set of N,N′-disubstituted sulfamides and sodium cyclamate have been tested for their inhibitory action against six isoforms of carbonic anhydrase (CA, EC 4.2.1.1) found in the brain, that is, CA I, CA II, CA VII, CA IX, CA XII and CA XIV, some of which are involved in epileptogenesis. The biological data showed interesting results for CA VII inhibition, the isozyme thought to be a novel antiepileptic target. Strong CA VII inhibitors, with Ki values in the low nanomolar–subnanomolar range were identified. Some of these derivatives showed selectivity for inhibition of CA VII versus the ubiquitous isoform CA II, for which the Ki values were in the micromolar range. Molecular modeling approaches were employed to understand the binding interactions between these compounds and the two CA isoforms, since the mechanism of action of such disubstituted sulfamides was not yet investigated by means of X-ray crystallography.  相似文献   
3.
We investigated the ability of zinc sulfate (5, 25, 50 mM) to inhibit the sweetness of 12 chemically diverse sweeteners, which were all intensity matched to 300 mM sucrose [800 mM glucose, 475 mM fructose, 3.25 mM aspartame, 3.5 mM saccharin, 12 mM sodium cyclamate, 14 mM acesulfame-K, 1.04 M sorbitol, 0.629 mM sucralose, 0.375 mM neohesperidin dihydrochalcone (NHDC), 1.5 mM stevioside and 0.0163 mM thaumatin]. Zinc sulfate inhibited the sweetness of most compounds in a concentration dependent manner, peaking with 80% inhibition by 50 mM. Curiously, zinc sulfate never inhibited the sweetness of Na-cyclamate. This suggests that Na-cyclamate may access a sweet taste mechanism that is different from the other sweeteners, which were inhibited uniformly (except thaumatin) at every concentration of zinc sulfate. We hypothesize that this set of compounds either accesses a single receptor or multiple receptors that are inhibited equally by zinc sulfate at each concentration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号