首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1785篇
  免费   265篇
  国内免费   13篇
  2024年   1篇
  2023年   20篇
  2022年   39篇
  2021年   58篇
  2020年   66篇
  2019年   82篇
  2018年   80篇
  2017年   44篇
  2016年   57篇
  2015年   103篇
  2014年   95篇
  2013年   79篇
  2012年   39篇
  2011年   103篇
  2010年   85篇
  2009年   102篇
  2008年   82篇
  2007年   104篇
  2006年   96篇
  2005年   108篇
  2004年   106篇
  2003年   90篇
  2002年   70篇
  2001年   23篇
  2000年   23篇
  1999年   37篇
  1998年   40篇
  1997年   55篇
  1996年   23篇
  1995年   42篇
  1994年   29篇
  1993年   16篇
  1992年   18篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   7篇
  1987年   5篇
  1986年   1篇
  1985年   7篇
  1984年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
排序方式: 共有2063条查询结果,搜索用时 203 毫秒
1.
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.  相似文献   
2.
The binding of pentaammineruthenium (III) to ribonuclease A and B both free and complexed with d(pA)4 has been examined in the crystalline state through the application of X-ray diffraction and difference Fourier techniques. In crystals of native RNase B, the reagent was observed to have many binding sites, some entirely electrostatic in nature and others consistent with coordination to histidine residues. The primary histidine in the latter case was 105 with 119 also partially substituted. In crystals of RNase A+d(pA)4 complex only a single, extremely strong site of substitution was observed, and this was 2.4 Å from the native position of the imidazole ring of histidine 105. Thus, the results of these X-ray diffraction studies appear to be quite consistent with the findings of earlier NMR studies and with the results obtained in crystals of the gene 5 DNA binding protein.  相似文献   
3.
  1. Download : Download high-res image (112KB)
  2. Download : Download full-size image
  相似文献   
4.
Troponin is a ternary protein complex consisting of subunits TnC. TnI, and TnT, and plays a key role in calcium regulation of the skeletal and cardiac muscle contraction. In the present study, a partial complex (CI47) was prepared from Escherichia coli-expressed rabbit skeletal muscle TnC and fragment 1-47 of TnI, which is obtained by chemical cleavage of an E. coli-expressed mutant of rabbit skeletal muscle TnI. Within the ternary troponin complex, CI47 is thought to form a core that is resistant to proteolytic digestion, and the interaction within CI47 likely maintains the integrity of the troponin complex. Complex CI47 was crystallized in the presence of sodium citrate. The addition of trehalose improved the diffraction pattern of the crystals substantially. The crystal lattice belongs to the space group P3(1)(2)21, with unit cell dimensions a = b = 48.2 A, c = 162 A. The asymmetric unit presumably contains one CI47 complex. Soaking with p-chloromercuribenzenesulfonate (PCMBS) resulted in loss of isomorphism, but enhanced the quality of the crystals. The crystals diffracted up to 2.3 A resolution, with completeness of 91% and R(merge) = 6.4%. The crystals of PCMBS-derivative should be suitable for X-ray studies using the multiple-wavelength anomalous diffraction technique. This is the first step for elucidating the structure of the full troponin complex.  相似文献   
5.
  1. Download : Download high-res image (88KB)
  2. Download : Download full-size image
  相似文献   
6.
Inhibition of α-glucosidase is an effective strategy for controlling the post-prandial hyperglycemia in diabetic patients. For the identification of new inhibitors of this enzyme, a series of new (R)-1-(2-(4-bromo-2-methoxyphenoxy) propyl)-4-(4-(trifluoromethyl) phenyl)-1H-1,2,3-triazole derivatives were synthesized (8a–d and 10a–e). The structures were confirmed by NMR, mass spectrometry and, in case of compound 8a, by single crystal X-ray crystallography. The α-glucosidase inhibitory activities were investigated in vitro. Most derivatives exhibited significant inhibitory activity against α-glucosidase enzyme. Their structure-activity relationship and molecular docking studies were performed to elucidate the active pharmacophore against this enzyme. Compound 10b was the most active analogue with IC50 value of 14.2 µM, while compound 6 was found to be the least active having 218.1 µM. A preliminary structure-activity relationship suggested that the presence of 1H-1,2,3-triazole ring in 1H-1,2,3-triazole derivatives is responsible for this activity and can be used as anti-diabetic drugs. The molecular docking studies of all active compounds were performed, in order to understand the mode of binding interaction and the energy of this class of compounds.  相似文献   
7.
The uncertainties in the refined parameters for a 1.5-A X-ray structure of carbon-monoxy (FeII) myoglobin are estimated by combining energy minimization with least-squares refinement against the X-ray data. The energy minimizations, done without reference to the X-ray data, provide perturbed structures which are used to restart conventional X-ray refinement. The resulting refined structures have the same, or better, R-factor and stereochemical parameters as the original X-ray structure, but deviate from it by 0.13 A rms for the backbone atoms and 0.31 A rms for the sidechain atoms. Atoms interacting with a disordered sidechain, Arg 45 CD3, are observed to have larger positional uncertainties. The uncertainty in the B-factors, within the isotropic harmonic motion approximation, is estimated to be 15%. The resulting X-ray structures are more consistent with the energy parameters used in simulations.  相似文献   
8.
Proteinase K, the extracellular serine endopeptidase (E.C. 3.4.21.14) from the fungus Tritirachium album limber, is homologous to the bacterial subtilisin proteases. The binding geometry of the synthetic inhibitor carbobenzoxy-Ala-Phechloromethyl Ketone to the active site of proteinase K was the first determined from a Fourier synthesis based on synchrotron X-ray diffraction data between 1.8 Å and 5.0 Å resolution. The protein inhibitor complexes was refined by restrained least-squares minimization with the data between 10.0 and 1.8 Å. The final R factor was 19.1% and the model contained 2,018 protein atoms, 28 inhibitors atoms, 125 water molecules, and two Ca2+ ions. The peptides portion of the inhibitor is bound to the active center of proteinase K by means of a three-stranded antiparallel pleated sheet, with the side chain of the phenylalanine located in the P1 site. Model building studies, with lysine replacing phenylalanine in the inhibitor, explain the relatively unspecific catalytic activity of the enzyme.  相似文献   
9.
The structure of human erythrocytic carbonic anhydrase II has been refined by constrained and restrained structure–factor least-squares refinement at 2.0 Å resolution. The conventional crystallographic R value is 17.3%. Of 167 solvent molecules associated with the protein, four are buried and stabilize secondary structure elements. The zinc ion is ligated to three histidyl residues and one water molecule in a nearly tetrahedral geometry. In addition to the zinc-bound water, seven more water molecules are identified in the active site. Assuming that Glu-106 is deprotonated at pH 8.5, some of the hydrogen bond donor–acceptor relations in the active site can be assigned and are described here in detail. The Oγ1 atom of Thr-199 donates its proton to the Oε1 atom of Glu-106 and can function as a hydrogen bond acceptor only in additional hydrogen bonds.  相似文献   
10.
The binding of four inhibitors--mercuric ion, 3-acetoxymercuri-4-aminobenzenesulfonamide (AMS), acetazolamide (Diamox), and thiocyanate ion--to human carbonic anhydrase II (HCA II) has been studied with X-ray crystallography. The binding of mercury to HCA II at pH 7.0 has been investigated at 3.1 A resolution. Mercuric ions are observed at both nitrogens in the His-64 ring. One of these sites is pointing toward the zinc ion. The only other binding site for mercury is at Cys-206. The binding of the two sulfonamide inhibitors AMS and Diamox, has been reinvestigated at 2.0 and 3.0 A, respectively. Only the nitrogen of the sulfonamide group binds to the zinc ion replacing the hydroxyl ion. The sulfonamide oxygen closest to the zinc ion is 3.1 A away. Thus the tetrahedral geometry of the zinc is retained, refuting earlier models of a pentacoordinated zinc. The structure of the thiocyanate complex has been investigated at pH 8.5 and the structure has been refined at 1.9 A resolution using the least-squares refinement program PROLSQ. The crystallographic R factor is 17.6%. The zinc ion is pentacoordinated with the anion as well as a water molecule bound in addition to the three histidine residues. The nitrogen atom of the SCN- ion is 1.9 A from the zinc ion but shifted 1.3 A with respect to the hydroxyl ion in the native structure and at van der Waals' distance from the O gamma l atom of Thr-199. This is due to the inability of the O gamma l atom of Thr-199 to serve as a hydrogen bond donor, thus repelling the nonprotonated nitrogen. The SCN- molecule reaches into the deep end of the active site cavity where the sulfur atom has displaced the so-called "deep" water molecule of the native enzyme. The zinc-bound water molecule is 2.2 A from the zinc ion and 2.4 A from the SCN- nitrogen. In addition, this water is hydrogen bonded to the O gamma l atom of Thr-199 and to another water molecule. We have observed that solvent and inhibitor molecules have three possible binding sites on the zinc ion and their significance for the catalysis and inhibition of HCA II will be discussed. All available crystallographic data are consistent with a proposed catalytic mechanism in which both the OH moiety and one oxygen of the substrate HCO3- ion are ligated to the zinc ion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号