首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1686篇
  免费   235篇
  国内免费   355篇
  2024年   3篇
  2023年   52篇
  2022年   35篇
  2021年   66篇
  2020年   91篇
  2019年   101篇
  2018年   103篇
  2017年   101篇
  2016年   115篇
  2015年   100篇
  2014年   92篇
  2013年   124篇
  2012年   99篇
  2011年   74篇
  2010年   56篇
  2009年   79篇
  2008年   80篇
  2007年   83篇
  2006年   67篇
  2005年   84篇
  2004年   52篇
  2003年   57篇
  2002年   62篇
  2001年   55篇
  2000年   44篇
  1999年   37篇
  1998年   21篇
  1997年   30篇
  1996年   33篇
  1995年   36篇
  1994年   30篇
  1993年   16篇
  1992年   16篇
  1991年   27篇
  1990年   26篇
  1989年   21篇
  1988年   12篇
  1987年   10篇
  1986年   11篇
  1985年   2篇
  1984年   17篇
  1983年   9篇
  1982年   14篇
  1981年   8篇
  1980年   5篇
  1979年   4篇
  1978年   6篇
  1977年   5篇
  1974年   2篇
  1970年   1篇
排序方式: 共有2276条查询结果,搜索用时 25 毫秒
1.
Net productivity of vegetation is determined by the product of the efficiencies with which it intercepts light (?i) and converts that intercepted energy into biomass (?c). Elevated carbon dioxide (CO2) increases photosynthesis and leaf area index (LAI) of soybeans and thus may increase ?i and ?c; elevated O3 may have the opposite effect. Knowing if elevated CO2 and O3 differentially affect physiological more than structural components of the ecosystem may reveal how these elements of global change will ultimately alter productivity. The effects of elevated CO2 and O3 on an intact soybean ecosystem were examined with Soybean Free Air Concentration Enrichment (SoyFACE) technology where large field plots (20‐m diameter) were exposed to elevated CO2 (~550 μmol mol?1) and elevated O3 (1.2 × ambient) in a factorial design. Aboveground biomass, LAI and light interception were measured during the growing seasons of 2002, 2003 and 2004 to calculate ?i and ?c. A 15% increase in yield (averaged over 3 years) under elevated CO2 was caused primarily by a 12% stimulation in ?c , as ?i increased by only 3%. Though accelerated canopy senescence under elevated O3 caused a 3% decrease in ?i, the primary effect of O3 on biomass was through an 11% reduction in ?c. When CO2 and O3 were elevated in combination, CO2 partially reduced the negative effects of elevated O3. Knowing that changes in productivity in elevated CO2 and O3 were influenced strongly by the efficiency of conversion of light energy into energy in plant biomass will aid in optimizing soybean yields in the future. Future modeling efforts that rely on ?c for calculating regional and global plant productivity will need to accommodate the effects of global change on this important ecosystem attribute.  相似文献   
2.
Summary In comparison to cassava grown in monoculture the root infection of cassava with vesicular-arbuscular mycorrhiza was increased by crop rotation with grain legumes in the field. This was also found when cassava was intercropped with legumes and fertilized. A possible specificity of mycorrhizal fungi to increase the yield of one species more than the other when grown in association, is discussed.  相似文献   
3.
Species richness in the alpine zone varies dramatically when communities are compared. We explored (i) which stress and disturbance factors were highly correlated with species richness, (ii) whether the intermediate stress hypothesis (ISH) and the intermediate disturbance hypothesis (IDH) can be applied to alpine ecosystems, and (iii) whether standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone. Species numbers and standing crop were determined in 14 alpine plant communities in the Swiss Alps. To quantify the stress and disturbance factors in each community, air temperature, relative air humidity, wind speed, global radiation, UV-B radiation, length of the growing season, soil suction, pH, main soil nutrients, waterlogging, soil movement, number of avalanches, level of denudation, winter dieback, herbivory, wind damage, and days with frost were measured or observed. The present study revealed that 82% of the variance in␣vascular species richness among sites could be explained by just two abiotic factors, daily maximum temperature and soil pH. Daily maximum temperature and pH affect species richness both directly and via their effects on other environmental variables. Some stress and disturbance factors were related to species richness in a monotonic way, others in an unimodal way. Monotonic relationships suggest that the harsher the environment is, the fewer species can survive in such habitats. In cases of unimodal relationships (ISH and IDH) species richness decreases at both ends of the gradients due to the harsh environment and/or the interaction of other environmental factors. Competition and disturbance seemed only to play a secondary role in the form of fine-tuning species richness in specific communities. Thus, we concluded that neither the ISH nor the IDH can be considered useful conceptual models for the alpine zone. Furthermore, we found that standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone, even though there is no direct causality.  相似文献   
4.
《Neuron》2020,105(2):237-245.e4
  1. Download : Download high-res image (214KB)
  2. Download : Download full-size image
  相似文献   
5.
In the past great efforts have been made to gain a thorough understanding of the processes involved in carbon fixation but the fate of the acquired carbon has been somewhat neglected, although this aspect is crucial for improving yield performance without diminishing the quality of the harvested organs. To contribute to the crucial debate on that topic the aim of the present study was to propose some unbiased components concerning in particular grain legumes: ‘Is there any antagonism between high yield and increased nutritional quality, with a focus on protein content?’ An original approach has been used to study the impact of the modification of seed composition on the crop production, which combines theoretical calculations of energetic cost and field yield data. When applied to a wide range of species with varying seed composition, a plurispecific negative relationship between the theoretical carbon costs of seed production and the observed yields was demonstrated. The high-throughput of genetic markers could result in large-scale screening of seed quality parameters and such studies, while evaluating the impact of seed composition on crop yield, could also be used to provide data to forecast the economic impact of a new line with an original composition compared with its economically enhanced value.  相似文献   
6.
Seedlings of 14 species were grown for 14–28 days on nutrient solution with 6 mmol.l−1 NH4 as the sole nitrogen source. Solutions acidity was were kept constant at pH 4.0, 5.0, 6.0 and 7.0 by continuous titration with diluted KOH. The following species were used: barley, maize, oats sorghum, yellow and white lupin, pea, soybean, carrot, flax, castor-oil, spinach, sugarbeet and sunflower. Most plant species grew optimally at pH 6.0 with slight reductions at pH 5.0. Growth of many species was severely inhibited at pH 4.0, but this inhibition was not observed with the legume and cereal species. Yield depressions at pH 4.0 relative to pH 6.0 were well correlated with the respective relative decreases of the K concentration in their roots (P<0.002). In the roots of two species (sunflower and flax) total N concentrations were also strongly reduced at pH 4.0. apparently, the interactions between uptake of K, NH4 and H ions become the prevalent problem at suboptimal pH. At pH 7.0, yields were also considerably decreased, with the exception of the lupines. At this pH, the roots of the growth inhibited plants were characterized by increased levels of total N and free NH4. It is thought that the binding capacity of the roots for NH4 is an important factor in preventing NH4/NH3 toxicity at supraoptimal pH.  相似文献   
7.
Benthic algal biomass and productivity in high subarctic streams,Alaska   总被引:2,自引:2,他引:0  
Year-round measurements of the standing crop of epilithic algae (as chlorophyll a concentration) in two streams — one second and one fourth order (map scale 1:63 360) — in interior Alaska (64°–65° N) were only about one tenth that reported from streams of temperate North America. Cell densities in these streams, however, were similar to those in comparable temperate streams. Year-round domination of the benthic flora by very tiny diatoms (Achnanthes spp.) may explain the apparent disparity between low chlorophyll a content and nearly average cell densities. Chlorophyll a standing crop in a more alkaline groundwater-fed stream, however, was higher and within the range of similarly sized temperate streams. Maximum chlorophyll a standing crop varied positively with alkalinity in 5 clear-water streams where standing crop was measured on natural or artificial substrates. Seasonal mean concentrations of sestonic chlorophyll a (used as estimates of benthic algal chlorophyll a standing crop) varied directly and significantly with alkalinity among ten clear-water streams; and, with total phosphorus among 8 of 10 clear-water and 5 brown-water streams studied. During the summer, when there is little darkness, gross primary productivity (as estimated by the diurnal dissolved-oxygen method) was similar to that of northern temperate streams. Gross primary productivity was also seen to vary directly with alkalinity in 5 clear-water streams of this region.U.S. Fish and Wildlife Service  相似文献   
8.
Observations on the behavior of living hominoids show generic differences in the use and posture of the wrist joint. Both orang-utans and hylobatids usually use the wrist in suspensory behaviors. However, orang-utans emphasize markedly adducted and flexed wrist postures, while hylobatids emphasize violent forearm and wrist rotation. African apes, especially the gorilla, use the wrist more frequently than other hominoids for terrestrial quadrupedal weight-bearing. Humans use the wrist less frequently for supportive purposes than do other hominoids. These behavioral differences correspond to structural specializations in the proximal carpal joint of each of the hominoid genera. Although each of the hominoid genera has apparently modified its proximal carpal joint best to serve its characteristic behaviors, all hominoids share a unique proximal carpal joint that permits approximately 160ℴ of forearm rotation. The hylobatid proximal carpal joint is specialized in exhibiting a marked development of those structures limiting forearm rotation, but it is in most respects the least derived— that is, closest to the nonhominoid anthropoids. Chimpanzees show a proximal carpal joint that is more generalized than those of the other great apes but more derived than that of hylobatids. The human and gorilla proximal wrist joints, on the other hand, show marked modifications for weight-bearing in terrestrial behaviors. Orang-utans have the most derived proximal carpal joint, which in many respects parallels that of the slow-climbing nonhominoid primates. The comparative anatomy and structural specializations of the wrist joint support (a) an early divergence of hylobatids from the common hominoid stock, (b) a common ancestry for gorillas and humans separate from the other hominoids, and (c) a long independent evolutionary period for orang-utans since their divergence from the common hominoid stock, or one that was marked by strong selection pressures for wrist specializations. Unfortunately, the generalized condition of the chimpanzee’s wrist joint and the very derived condition of the orang-utan wrist provide uncertain evidence as to which of the two was first to diverge from the common hominoid stock. Identification of hominoid wrist specializations as reflecting real phylogenetic relationships or parallelisms depends on how well the phytogeny inferred from wrist morphology accords with those arrived at from the study of other systems.  相似文献   
9.
The influence of soil texture on Soybean yield in the presence of Heterodera glycines was investigated by comparing yields of susceptible cultivars with a resistant cultivar for 2 years. Soybean yield was negatively correlated with increasing sand content (P = 0.05). Yields of susceptible cultivars were suppressed with increasing sand content. Final nematode population densities were lowest in plots with greatest sand content. Soybean infection by SCN, as determined by the number of cysts 30 days after planting, was not consistently related to soil texture over 2 years. Initial nematode population density was positively related to soybean yield the first year and negatively related to soybean yield the second, probably a result of greater yield suppression by H. glycines in plots with greater sand content.  相似文献   
10.
Populations of viable sclerotia ofSclerotium rolfsii were highest in soil in a field in which tomato was planted for three successive years before sampling and in one in which tomato followed groundnut in the 2 years prior to this study. The lowest sclerotial numbers were recorded in fields in which groundnut followed maize or in which maize or sorghum was the last crop before sampling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号