首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4696篇
  免费   570篇
  国内免费   283篇
  2024年   8篇
  2023年   108篇
  2022年   61篇
  2021年   134篇
  2020年   219篇
  2019年   268篇
  2018年   220篇
  2017年   262篇
  2016年   224篇
  2015年   256篇
  2014年   291篇
  2013年   460篇
  2012年   204篇
  2011年   200篇
  2010年   164篇
  2009年   242篇
  2008年   226篇
  2007年   251篇
  2006年   219篇
  2005年   187篇
  2004年   149篇
  2003年   140篇
  2002年   141篇
  2001年   109篇
  2000年   81篇
  1999年   91篇
  1998年   73篇
  1997年   78篇
  1996年   61篇
  1995年   63篇
  1994年   51篇
  1993年   39篇
  1992年   42篇
  1991年   36篇
  1990年   37篇
  1989年   25篇
  1988年   17篇
  1987年   19篇
  1986年   19篇
  1985年   12篇
  1984年   13篇
  1983年   9篇
  1982年   11篇
  1981年   11篇
  1980年   2篇
  1979年   7篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1974年   2篇
排序方式: 共有5549条查询结果,搜索用时 15 毫秒
1.
Net productivity of vegetation is determined by the product of the efficiencies with which it intercepts light (?i) and converts that intercepted energy into biomass (?c). Elevated carbon dioxide (CO2) increases photosynthesis and leaf area index (LAI) of soybeans and thus may increase ?i and ?c; elevated O3 may have the opposite effect. Knowing if elevated CO2 and O3 differentially affect physiological more than structural components of the ecosystem may reveal how these elements of global change will ultimately alter productivity. The effects of elevated CO2 and O3 on an intact soybean ecosystem were examined with Soybean Free Air Concentration Enrichment (SoyFACE) technology where large field plots (20‐m diameter) were exposed to elevated CO2 (~550 μmol mol?1) and elevated O3 (1.2 × ambient) in a factorial design. Aboveground biomass, LAI and light interception were measured during the growing seasons of 2002, 2003 and 2004 to calculate ?i and ?c. A 15% increase in yield (averaged over 3 years) under elevated CO2 was caused primarily by a 12% stimulation in ?c , as ?i increased by only 3%. Though accelerated canopy senescence under elevated O3 caused a 3% decrease in ?i, the primary effect of O3 on biomass was through an 11% reduction in ?c. When CO2 and O3 were elevated in combination, CO2 partially reduced the negative effects of elevated O3. Knowing that changes in productivity in elevated CO2 and O3 were influenced strongly by the efficiency of conversion of light energy into energy in plant biomass will aid in optimizing soybean yields in the future. Future modeling efforts that rely on ?c for calculating regional and global plant productivity will need to accommodate the effects of global change on this important ecosystem attribute.  相似文献   
2.
Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks.  相似文献   
3.
4.
5.
The ability of a number of nitrogen-containing compounds that simultaneously carry the adamantane and monoterpene moieties to inhibit Tdp1, an important enzyme of the DNA repair system, is studied. Inhibition of this enzyme has the potential to overcome chemotherapeutic resistance of some tumor types. Compound (+)-3c synthesized from 1-aminoadamantane and (+)-myrtenal, and compound 4a produced from 2-aminoadamantane and citronellal were found to be most potent as they inhibited Tdp1 with IC50 values of 6 and 3.5 µM, respectively. These compounds proved to have low cytotoxicity in colon HCT-116 and lung A-549 human tumor cell lines (CC50 > 50 µM). It was demonstrated that compound 4a at 10 µM enhanced cytotoxicity of topotecan, a topoisomerase 1 poison in clinical use, against HCT-116 more than fivefold and to a lesser extent of 1.5 increase in potency for A-549.  相似文献   
6.
7.
The expected increase in the global demand for livestock products calls for insight in the scope to increase actual production levels across the world. This insight can be obtained by using theoretical concepts of production ecology. These concepts distinguish three production levels for livestock: potential (i.e. theoretical maximum) production, which is defined by genotype and climate only; feed-limited production, which is limited by feed quantity and quality; and actual production. The difference between the potential or limited production and the actual production is the yield gap. The objective of this paper, the first in a series of three, is to present a mechanistic, dynamic model simulating potential and feed-limited production for beef cattle, which can be used to assess yield gaps. A novelty of this model, named LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems – Beef cattle), is the identification of the defining factors (genotype and climate) and limiting factors (feed quality and available feed quantity) for cattle growth by integrating sub-models on thermoregulation, feed intake and digestion, and energy and protein utilisation. Growth of beef cattle is simulated at the animal and herd level. The model is designed to be applicable to different beef production systems across the world. Main model inputs are breed-specific parameters, daily weather data, information about housing, and data on feed quality and quantity. Main model outputs are live weight gain, feed intake and feed efficiency (FE) at the animal and herd level. Here, the model is presented, and its use is illustrated for Charolais and Brahman × Shorthorn cattle in France and Australia. Potential and feed-limited production were assessed successfully, and we show that FE of herds is highest for breeds most adapted to the local climate conditions. LiGAPS-Beef also identified the factors that define and limit growth and production of cattle. Hence, we argue the model has scope to be used as a tool for the assessment and analysis of yield gaps in beef production systems.  相似文献   
8.
Species richness in the alpine zone varies dramatically when communities are compared. We explored (i) which stress and disturbance factors were highly correlated with species richness, (ii) whether the intermediate stress hypothesis (ISH) and the intermediate disturbance hypothesis (IDH) can be applied to alpine ecosystems, and (iii) whether standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone. Species numbers and standing crop were determined in 14 alpine plant communities in the Swiss Alps. To quantify the stress and disturbance factors in each community, air temperature, relative air humidity, wind speed, global radiation, UV-B radiation, length of the growing season, soil suction, pH, main soil nutrients, waterlogging, soil movement, number of avalanches, level of denudation, winter dieback, herbivory, wind damage, and days with frost were measured or observed. The present study revealed that 82% of the variance in␣vascular species richness among sites could be explained by just two abiotic factors, daily maximum temperature and soil pH. Daily maximum temperature and pH affect species richness both directly and via their effects on other environmental variables. Some stress and disturbance factors were related to species richness in a monotonic way, others in an unimodal way. Monotonic relationships suggest that the harsher the environment is, the fewer species can survive in such habitats. In cases of unimodal relationships (ISH and IDH) species richness decreases at both ends of the gradients due to the harsh environment and/or the interaction of other environmental factors. Competition and disturbance seemed only to play a secondary role in the form of fine-tuning species richness in specific communities. Thus, we concluded that neither the ISH nor the IDH can be considered useful conceptual models for the alpine zone. Furthermore, we found that standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone, even though there is no direct causality.  相似文献   
9.
10.
As part of a selection strategy for artificial nucleic acids (XNA) (to be considered as potential new information systems in vivo), we have carried out a modelling study on cyclohexanyl nucleic acids (CNA) duplexes and hairpins. CNA may form a duplex as well as hairpin structures, having the carbocyclic nucleosides in the 4C1 conformation (with equatorial basis). The geometry of ds CNA is close to that of a HNA:RNA duplex. We demonstrated that CNA triphosphates function as a substrate for polymerases. Modelling experiments indicate that the monomers are probably presented to the polymerase in the 1C4 conformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号