首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2190篇
  免费   96篇
  国内免费   75篇
  2024年   5篇
  2023年   39篇
  2022年   31篇
  2021年   75篇
  2020年   64篇
  2019年   74篇
  2018年   83篇
  2017年   39篇
  2016年   47篇
  2015年   55篇
  2014年   106篇
  2013年   104篇
  2012年   75篇
  2011年   75篇
  2010年   80篇
  2009年   89篇
  2008年   100篇
  2007年   104篇
  2006年   89篇
  2005年   70篇
  2004年   67篇
  2003年   63篇
  2002年   60篇
  2001年   49篇
  2000年   39篇
  1999年   40篇
  1998年   52篇
  1997年   38篇
  1996年   33篇
  1995年   36篇
  1994年   39篇
  1993年   34篇
  1992年   26篇
  1991年   22篇
  1990年   20篇
  1989年   25篇
  1988年   23篇
  1987年   27篇
  1986年   19篇
  1985年   24篇
  1984年   63篇
  1983年   31篇
  1982年   25篇
  1981年   25篇
  1980年   19篇
  1979年   29篇
  1978年   6篇
  1977年   7篇
  1976年   7篇
  1975年   5篇
排序方式: 共有2361条查询结果,搜索用时 15 毫秒
1.
《Cell reports》2020,30(5):1530-1541.e4
  1. Download : Download high-res image (102KB)
  2. Download : Download full-size image
  相似文献   
2.
The lagena (the third otolith endorgan in vertebrates)   总被引:1,自引:1,他引:0  
In this review, the structure and functions of the lagena (the third otolith organ) in an evolutionary lineage of the vertebrates are described and discussed. The lagenar macula appears first in the posterior part of the sacculus of elasmobranchs; in these animals, the lagena is considered to be involved in the balance support (orientation with respect to the gravitation force). The lagena as a separate endorgan has been described in teleost fishes; in some species, the lagena is connected with the sacculus, while in other species the interrelations of these structures can be dissimilar. The lagena supplements the functions of the sacculus; in fishes (animals with no special organ of hearing), it is involved in discrimination of sound oscillations, identification of the gravitation vector, and orientation in the course of movements within the vertical plane. In amphibians, the lagena is localized in the posterior part of the sacculus, near the auditory structures; it performs mostly vestibular and (to a much lesser extent) auditory functions. In amniotes, the lagena was first separated from the sacculus; it is localized in the cochlear canal, distally with respect to the hearing organ. Information on the functions of the lagena in amniotes is rather limited and contradictory. Central projections of this organ have been examined practically only in birds. Lagenar afferents project to the vestibular nuclei and cerebellum, while some fibers come to the auditory nuclei of the medulla. The lagena in birds can be related to their navigation abilities (birds are supposed to be capable of orienting within the magnetic field of the Earth due to the magnetic properties of the lagenar otoconia; this structure can also provide detection of movements along the vertical axis. The close proximity between the otolithic and auditory endorgans in the cochlear canal of amniotes can be indicative of the functional significance of these interrelations. This aspect, however, remains at present undiscovered. In mammals (except Monotremata), there is no lagena as an independent endorgan. Neirofiziologiya/Neurophysiology, Vol. 40, No. 2, pp. 160–178, March–April, 2008.  相似文献   
3.
4.
5.
《Cell》2022,185(20):3753-3769.e18
  1. Download : Download high-res image (311KB)
  2. Download : Download full-size image
  相似文献   
6.
Desymmetrization of the pseudochiral (2r)-configured cyclohexane-1,2,3-triamines 8 with dimethyl oxalate led to racemic aminoquinoxaline-2,3-diones 9. Selective introduction of the κ pharmacophoric structural elements pyrrolidine and 3,4-dichlorophenylacetamide with a two-carbon distance afforded conformationally restricted κ agonists 1315 based on the quinoxaline ring system. In competitive radioligand receptor binding studies the benzylamine 13b, the secondary amine 14b, and the carbamate 15 displayed high κ receptor affinity. The Ki value of the lead compound derived methoxycarbonyl derivative 15 is 9.7 nM. However, the κ affinity of 15 is exceeded by 13b and 14b with a basic functional group instead of the methoxycarbonyl group in 1-position of the quinoxaline system. The chlorine atoms of the dichlorophenylacetyl residue are essential, since the corresponding phenylacetyl analogs show considerably reduced κ affinity. The potent κ ligands 13b, 14b and 15 are selective over the related μ- and δ-opioid receptors, σ1, σ2 and NMDA receptors. In the [35S]GTPγS-binding assay 13b behaved as partial agonist with lower activity than U-69,593.  相似文献   
7.
8.
Reaction centers were purified from the thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. The reaction center consists of four polypeptides L, M, H and C, whose apparent molecular masses were determined to be 25, 30, 34 and 44 kDa, respectively, by polyacrylamide gel electrophoresis. The heaviest peptide corresponds to tightly bound cytochrome. The tightly bound cytochrome c contains two types of heme, high-potential c-556 and low-potential c-553. The low-potential heme is able to be photooxidized at 77 K. The reaction center exhibits laser-flash-induced absorption changes and circular dichroism spectra similar to those observed in other purple photosynthetic bacteria. Whole cells contain both ubiquinone and menaquinone. Reaction centers contain only a single active quinone; chemical analysis showed this to be menaquinone. Reaction center complexes without the tightly bound cytochrome were also prepared. The near-infrared pigment absorption bands are red-shifted in reaction centers with cytochrome compared to those without cytochrome.  相似文献   
9.
R. A. Chylla  G. Garab  J. Whitmarsh 《BBA》1987,894(3):562-571
We used two different techniques to measure the recovery time of Photosystem II following the transfer of a single electron from P-680 to QA in thylakoid membranes isolated from spinach. Electron transfer in Photosystem II reaction centers was probed first by spectroscopic measurements of the electrochromic shift at 518 nm due to charge separation within the reaction centers. Using two short actinic flashes separated by a variable time interval we determined the time required after the first flash for the electrochromic shift at 518 nm to recover to the full extent on the second flash. In the second technique the redox state of QA at variable times after a saturating flash was monitored by measurement of the fluorescence induction in the absence of an inhibitor and in the presence of ferricyanide. The objective was to determine the time required after the actinic flash for the fluorescence induction to recover to the value observed after a 60 s dark period. Measurements were done under conditions in which (1) the electron donor for Photosystem II was water and the acceptor was the endogenous plastoquinone pool, and (2) Q400, the Fe2+ near QA, remained reduced and therefore was not a participant in the flash-induced electron-transfer reactions. The electrochromic shift at 518 nm and the fluorescence induction revealed a prominent biphasic recovery time for Photosystem II reaction centers. The majority of the Photosystem II reaction centers recovered in less than 50 ms. However, approx. one-third of the Photosystem II reaction centers required a half-time of 2–3 s to recover. Our interpretation of these data is that Photosystem II reaction centers consist of at least two distinct populations. One population, typically 68% of the total amount of Photosystem II as determined by the electrochromic shift, has a steady-state turnover rate for the electron-transfer reaction from water to the plastoquinone pool of approx. 250 e / s, sufficiently rapid to account for measured rates of steady-state electron transport. The other population, typically 32%, has a turnover rate of approx. 0.2 e / s. Since this turnover rate is over 1000-times slower than normally active Photosystem II complexes, we conclude that the slowly turning over Photosystem II complexes are inconsequential in contributing to energy transduction. The slowly turning over Photosystem II complexes are able to transfer an electron from P-680 to QA rapidly, but the reoxidation of QA is slow (t1/2 = 2 s). The fluorescence induction measurements lead us to conclude that there is significant overlap between the slowly turning over fraction of Photosystem II complexes and PS IIβ reaction centers. One corollary of this conclusion is that electron transfer from P-680 to QA in PS IIβ reaction centers results in charge separation across the membrane and gives rise to an electrochromic shift.  相似文献   
10.
RNA polymerase from the archaebacterium Sulfolobus acidocaldarius was chemically modified with AMP o-formylphenyl ester followed by reduction with borohydride. The modified protein catalyzes the labeling of its own largest subunit when incubated with [-33P]UTP in the presence of poly[d(A-T)]. On cleaving of the labeled protein using cyanogen bromide, hydroxylamine or amino acid-specific endoproteinases for a very brief period, the pattern and size of the radioactive fragments formed are best explained by attachment of the label between Gly843 and Met895 of the largest subunit. In this region there exists a highly conserved sequence which is also found in other archaebacterial, eukaryotic and prokaryotic RNA polymerases. This suggests that the binding site for the initiating substrate of RNA polymerases has been conserved during evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号