首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2003年   1篇
  2002年   1篇
  1993年   1篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有9条查询结果,搜索用时 62 毫秒
1
1.
Our objective was to examine the developmental fate of sperm nuclei in oocytes fertilized under conditions of meiotic arrest. Therefore zona-free metaphase II oocytes and oocyte fragments (nucleate and anucleate) were fertilized in the presence of colcemid. In anucleate oocyte fragments, normal male pronuclei develop. In contrast, in intact oocytes and nucleate fragments sperm nuclei after initial decondensation undergo secondary condensation. This state is maintained as long as the oocytes are treated with colcemid. When the drug is removed 3 h after insemination, the meiotic spindle(s) is reconstructed, the second polar body(ies) is extruded, and a female pronucleus (or micronuclei) forms. At the same time the sperm nucleus decondenses again and transforms into a male pronucleus. In addition oocytes fertilized in the presence of colcemid could not be refertilized. These observations suggest that oocytes and oocyte fragments fertilized in the presence of colcemid undergo activation despite the failure of pronucleus formation. The inhibitory effect of colcemid on the formation of pronuclei is expressed only in the presence of oocyte chromosomes. We suggest that colcemid stabilizes factors responsible for chromosome condensation that are associated with oocyte chromosomes but not factors (whether the same or different) present in the cytoplasm.  相似文献   
2.
Germinal vesicle migration (GVM) and dissolution (GVD) were studied in goldfish oocytes treated with 17-α,20–β-dihydroxyprogesterone (DHP) and/or demecolcine (DE; a colchicine derivative also known as colcemid) in vitro. DE (100 μg/ml) in the presence of DHP, enhanced steroid-induced GVM, after both 24 and 48 hr of incubation and significantly reduced the DHP ED50 value for GVM. Similarly, administration of DE alone elicited a significant, dose-related increase in GVM after 24 or 48 hr of incubation. The presence of DE, either alone or in combination with DHP, was without effect on GVD. The effect of DE was also tested on ooplasmic viscoelasticity in goldfish follicles subjected to a centrifugal force (160g for 1 min). Preincubation (24 hr) of goldfish follicles in DE significantly influenced the direction and the extent of the centrifugally induced GV movement along the axis of centrifugal force in a dose-related fashion. The present results provide support for the hypothesis that cytoskeletal components, such as microtubules that are sensitive to DE, are involved in the mechanism of GVM in goldfish oocytes.  相似文献   
3.
The sensitive plant Mimosa pudica is made insensitive by a brief treatment with colchicine. A high concentration of colchicine binding protein is present in the fresh actively moving leaves of M. pudica. This protein was partially characterized and compared with the animal brain tubulin. This colchicine binding activity is very low in the insensitive variety of Mimosa, namely Mimosa rubricaulis.  相似文献   
4.
During the process of progestogen-induced meiotic maturation in the goldfish oocyte, the oocyte nucleus (germinal vesicle, GV) migrates to the sperm entry site or micropyle at the animal pole. Following GV migration (GVM) to the micropyle, the nuclear membrane undergoes dissolution (GVD) and the cell enters metaphase I in preparation to generate the first polar body. Microtubule destabilizing drugs including colcemid, nocodazole and vinblastine were found to elicit GVM, mimicking the process which occurs just prior to the prophase I-metaphase I transition during steroid induced oocyte meiotic maturation. In addition, these drugs enhanced the induction of GVM by 17 alpha, 20 beta dihydroxy-4-pregnen-3-one, a potent, naturally occurring meiotogenic steroid in this species. By contrast, taxol, a microtubule stabilizing drug, was found to inhibit steroid induced GVM. A new assay for centrifugation induced GVM was applied to the goldfish oocyte in order to assess effects of steroids and drugs on GVM, without the complication of GVD or the restrictions imposed by the slow time course of naturally occurring GVM. The effective centrifugal force (ECF) required to elicit GVM in 50% of the oocytes (ECF50) decreased significantly after short incubations (1-5 hr) of oocytes with either 17 alpha,20 beta dihydroxy-4-pregnen-3-one or microtubule disrupting drugs (i.e., colcemid, nocodazole, or vinblastine). A working hypothesis, modeled after the effects of microtubule disrupting agents on intermediate filament arrays in somatic cells, is proposed in which a small number of microtubules or other polymeric tubulin units are responsible for maintaining a cytoskeletal array.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
The actinomycin D (AD)-induced apoptosis in human leukemia CMK-7 cell line is greatly accelerated by microtubule disruption with colcemid (CL). We studied the effect of antioxidants on this apoptosis in order to learn how the universal signal mediators, reactive oxygen species (ROS), are involved. Caspase-3 activation and DNA fragmentation were both suppressed by vitamin E (VE), t-butylhydroxyanisole, and luteolin. The ROS formation in the AD treatment was evidenced by flow cytometry, and further supported by suppression of caspase-3 activation by superoxide radical-forming enzyme inhibitors (TTFA, rotenone, and DPI). The inhibition of apoptosis by VE was completed during the initial 1-h treatment with AD, but it did not appear when VE was added with CL to washed cells after AD treatment. Luteolin, an iron chelator PDTC, and a water-soluble VE analogue, trolox, inhibited the apoptosis when added with CL after the AD treatment. Western blot analysis showed that the proteolytic cleavage of procaspase-9 and procaspase-3 were both inhibited when VE was added with AD or when luteolin was added with CL, and that the cytochrome c liberation was suppressed by both antioxidants. This result implies that the ROS are initially formed in lipophilic environments (e.g. mitochondrial membrane) and then they diffuse into an aqueous environment (i.e. cytoplasm) where they promote the apoptotic process in combination with the cytoskeletal disruption. Thus, the different antioxidants are effective to scavenge ROS for preventing the apoptosis in its different phases.  相似文献   
6.
It was shown that mouse embryo fibroblasts and human foreskin diploid fibroblasts of AGO 1523 line cultivated on specially prepared substrates with narrow (15 ± 3 m) linear adhesive strips were elongated and oriented along the strips, but the mean lengths of the fibroblasts of each type on the strips differed from those on the standard culture substrates. In contrast to the normal fibroblasts, the length of mouse embryonic fibroblasts with inactivated gene-suppressor Rb responsible for negative control of cell proliferation (MEF Rb-/-), ras-transformed mouse embryonic fibroblasts (MEF Rb-/-ras), or normal rat epitheliocytes of IAR2 line significantly exceeded those of the same cells on the standard culture substrates. The results of experiments with the drugs specifically affecting the cytoskeleton (colcemid and cytochalasin D) suggest that the constant mean length of normal fibroblasts is controlled by a dynamic equilibrium between two forces: centripetal tension of contractile actin-myosin microfilaments and centrifugal force generated by growing microtubules. This cytoskeletal mechanism is disturbed in MEF Rb-/- or MEF Rb-/-ras, probably, because of an impaired actin cytoskeleton and also in IAR2 epitheliocytes due to the different organization of the actin-myosin system in these cells, as compared to that in the fibroblasts.  相似文献   
7.
Transformed cells often display knobs (or blebs) distributed over their surface throughout most of interphase. Scanning electron microscopy (SEM) and time-lapse cinematography on CHO-K1 cells reveal roughly spherical knobs of 0.5–4 μm in diameter distributed densely around the cell periphery but sparsely over the central, nuclear hillock and oscillating in and out of the membrane with a period of 15–60 sec. Cyclic AMP derivatives cause the phenomenon of reverse transformation, in which the cell is converted to a fibroblastic morphology with disappearance of the knobs. A model was proposed attributing knob formation to the disorganization of the jointly operating microtubular and microfilamentous structure of the normal fibroblast. Evidence for this model includes the following: (1) Either colcemid or cytochalasin B (CB) prevents the knob disappearance normally produced by cAMP, and can elicit similar knobs from smooth-surfaced cells; (2) knob removal by cAMP is specific, with little effect on microvilli and lamellipodia; (3) immunofluorescence with antiactin sera reveals condensed, amorphous masses directly beneath the membrane of CB-treated cells instead of smooth, parallel fibrous patterns of reversetransformed cells or normal fibroblasts; (4) transmission electron microscopy (TEM) of sections show dense, elongated microfilament bundles and microtubules parallel to the long axis of the reverse-transformed CHO cell, but sparse, random microtubules throughout the transformed cell and an apparent disordered network of 6-nm microfilaments beneath the knobs; (5) cell membranes at the end of telophase, when the spindle disappears and cleavage is complete, display typical knob activity as expected by this picture.  相似文献   
8.
Summary Six different techniques were evaluated to define better those technical factors that are most critical for obtaining prometaphase cells for banding analysis. Our results demonstrate: (a) colcemid exposures of 30 min or less have no effect on increasing the yield of prometaphase cells, (b) colcemid exposures of greater than 0.1 μg/ml can be toxic, (c) methotrexate depresses the mitotic index significantly and seems to increase the incidence of prometaphase cells only because it suppresses later forms; and (d) the optimum number of cytogenetically satisfactory prometaphase cells can be obtained with a 4-h exposure to a combination of low concentration actinomycin D (0.5 μg/ml) and colcemid (0.1 μg/ml). This technique inhibits chromosome condensation while permitting prometaphase cells to accumulate for 4 h. This work was supported in part by National Institute of Environmental Health Science Grant 5-T32-ES07015-08 to the Environmental Toxicology Center at the University of Wisconsin, Madison.  相似文献   
9.
The aim of the present study was to investigate bromodeoxyuridine (BrdU) uptake and coordinated distribution of proliferating cell nuclear antigen (PCNA) and p34-cdc2-kinase, two important proteins involved in cell cycle regulation and progression. Flow cytometric analysis of marker proteins in freshly plated mouse T-lymphoma cells (Yac-1 cells), using fluorescein isothiocyanate (FITC)-labeled specific antibodies, showed PCNA distributed throughout the cell cycle with increased intensity in S-phase. PCNA is essential for cells to cycle through S-phase and its synthesis is initiated during late G1-phase before incorporation of BrdU and remains high during active DNA replication. The intensity of PCNA fluorescence increases with the duration of incubation after plating. The cdc2-kinase was detectable in all phases of the cell cycle and the G2-M-phase appears to have the maximum concentrations. The cell cycle analysis of high dose colcemid (2 μg/ml) treated Yac-1 cells showed an aneuploid or hypodiploid population. Although the G2-M-phase seems to be the dominating population in aneuploid cells, the concentrations of cdc2-kinase were variable in this phase of cell cycle. The colcemid treatment at 25 ng/ml arrested 96% of cells in S-phase and G2-M-phase, but PCNA expression was evident in a portion of the cell population in G2-M-phase. Although cells blocked in M-phase seem to have high levels of cdc2-kinase, colcemid renders them inactive. From these data, it appears that the down regulation and/or inactivation of cdc2-kinase could be responsible for the colcemid arrest of cells in M-phase.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号