首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   2篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   3篇
  2005年   6篇
  2003年   3篇
  2002年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   11篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1981年   1篇
  1978年   1篇
排序方式: 共有70条查询结果,搜索用时 187 毫秒
1.
Big Moose L. has become significantly more acidic since the 1950s, based on paleolimnological analyses of sediment cores. Reconstruction of past lakewater pH using diatom assemblage data indicates that from prior to 1800 to ca. 1950, lakewater pH was about 5.8. After the mid-1950s, the inferred pH decreased steadily and relatively quickly to about 4.6. Alkalinity reconstructions indicate a decrease of about 30 eq · l-1 during the same period. There was a major shift in diatom assemblage composition, including a nearly total loss of euplanktonic taxa. Chrysophyte scale assemblages and chironomid (midge larvae remains also changed in a pattern indicating decreasing lakewater pH starting in the 1950s. Accumulation rates of total Ca, exchangeable and oxide Al, and other metals suggest recent lake-watershed acidification. Cores were dated using210Pb, pollen, and charcoal. Indicators of watershed change (deposition rates of Ti, Si, Al) do not suggest any major erosional events resulting from fires or logging. Accumulation rates of materials associated with combustion of fossil fuels (polycyclic aromatic hydrocarbons, coal and oil soot particles, some trace metals, and sulfur) are low until the late 1800s-early 1900s and increase relatively rapidly until the 1920s–1930s. Peak rates occurred between the late 1940s and about 1970, when rates declined.The recent decrease in pH of Big Moose L. cannot be accounted for by natural acidification or processes associated with watershed disturbance. The magnitude, rate and timing of the recent pH and alkalinity decreases, and their relationship to indicators of coal and oil combustion, indicate that the most reasonable explanation for the recent acidification is increased atmospheric deposition of strong acids derived from combustion of fossil fuels.  相似文献   
2.
Summary The aim of this investigation was to evaluate the prevalence of atopic sensitization to chironomids (CHI) in patients with asthma and/or rhinitis (A/R), and to study concomitant sensitization to CHI and other allergens. Skin prick tests were performed with 3 different CHI extracts as well as with common inhalant allergens in 600 consecutive patients, 495 of which had A/R. Allergen specific IgE antibodies in the sera against CHI, shell fish and cockroaches were analyzed with Magic Lite.59 (12%) of the patients with A/R had a positive skin test with CHI. Positive skin tests with house dust mites and a storage mite were more common in CHI allergic patients than in other atopic patients. Nasal or conjunctival provocation tests, performed on 23 of the patients with positive skin test with CHI, were clearly positive in 7 cases (30%), questionable in 8 (35%) and negative in 8 cases (35%).Magic Lite, performed on sera from 50 of the patients with positive skin test against CHI, was positive with CHI in 39 cases (78%), with crayfish in 33 (66%), shrimp 20 (40%), cockroach 21 (40%) and with crab in 3 cases (6%).It is concluded that sensitization against CHI is common in patients with A/R. The clinical relevance of the positive test results is, however, unknown. Concomitant sensitization with CHI, crustaceans and cockroach is common.  相似文献   
3.
Ecotones mark zones of rapid change in ecological structure at various spatial scales. They are believed to be particularly susceptible to shifts caused by environmental transformation, making them key regions for studying the effects of global change. Here, we explored the variation in assemblage structure of aquatic primary producer and consumer communities across latitudinal transects in northeastern North America (Québec‐Labrador) to identify spatial patterns in biodiversity that indicated the location of transition zones across the landscape. We analyzed species richness and the cumulative rate of compositional change (expressed as beta‐diversity) of diatoms and chironomids to detect any abrupt shifts in the rate of spatial taxonomic turnover. We used principal coordinates analysis to estimate community turnover with latitude, then applied piecewise linear regression to assess the position of ecotones. Statistically significant changes in assemblage composition occurred at 52 and 55°N, corresponding to the transition between closed‐ and open‐crown forest, and to the southern onset of the forest tundra (i.e., the forest limit), respectively. The spatial distribution of ecotones was most strongly related to air temperature for chironomids and to vegetation‐ and soil‐related chemical attributes of lake water for diatoms, including dissolved organic carbon content and water color. Lakes at mid‐ to high‐latitudes currently face pressures from rapidly rising temperatures, accompanied by large increases in organic carbon inputs from their catchments, often leading to browning and its associated effects. The biota at the base of food webs in lakes located in transition zones are disproportionately affected by the cascading effects of these multi‐factorial changes, concurrent with pronounced terrestrial greening observed in these regions. Similar patterns of biotic shifts have been observed along alpine aquatic transects, indicating the potential for widespread restructuring of cold, high‐altitude and high‐latitude freshwater communities due to global change.  相似文献   
4.
1. To correctly interpret chironomid faunas for palaeoenvironmental reconstruction, it is essential that we improve our understanding of the relative influence of ecosystem variables, biotic as well as physicochemical, on chironomid larvae. To address this, we analysed the surface sediments from 39 shallow lakes (29 Norfolk, U.K., 10 Denmark) for chironomid head capsules, and 70 chironomid taxa (including Chaoborus) were identified. 2. The shallow lakes were selected over large environmental gradients of aquatic macrophytes, total phosphorus (TP) and fish communities. Redundancy analysis (RDA) identified two significant variables that explained chironomid distribution: macrophyte species richness (P < 0.001) and TP (P < 0.005). Generalised linear models (GLM) identified specific taxa that had significant relationships with both these variables. Macrophyte percentage volume infested (PVI) and species richness were significant in classifying the lake types based on chironomid communities under twinspan analysis, although other factors, notably nutrient concentrations and fish communities, were also important, illustrating the complexities of classifying shallow lake ecosystems. Lakes with plant species richness >10 all had relatively diverse (Hill’s N2) chironomid assemblages, and lakes with Hill’s N2 >10 all had TP <250 μg L−1 and total fish densities <2 fish per m2. 3. Plant density (PVI), and perhaps more importantly species richness, were primary controls on the distribution of chironomid communities within these lakes. This clearly has implications for palaeoenvironmental reconstructions using zoobenthos remains (i.e. chironomids) and suggests that they could be used to track changes in benthic/pelagic production and could be used as indicators of changing macrophyte habitat. 4. Measuring key biological gradients, in addition to physicochemical gradients, allowed the major controls on chironomid distribution to be assessed more directly, in terms of plant substrate, food availability, competition and predation pressure, rather than implying indirect mechanisms through relationships with nutrients. Many of these variables, notably macrophyte abundance and species richness, are not routinely measured in such studies, despite their importance in determining zoobenthos in temperate shallow lakes. 5. When physical, chemical and ecological gradients are considered, as is often the case with palaeo‐reconstructions rather than training sets chosen to maximise one gradient, complex relationships exist, and attempting to reconstruct a single trophic variable quantitatively may not be appropriate or reliable.  相似文献   
5.
Chironomid communities from three glacial and three non-glacial high mountain streams in three Alpine river basins were analyzed (Conca, Niscli, Cornisello, NE Italy, 46°N, 10°E). Eighteen sampling reaches belonging to five stream types (kryal, subkryal, glacio-rhithral, kreno-rhithral, outlet) were investigated. At each reach, geomorphological, physical, chemical and biological data were collected. Field surveys were carried out during three periods per year from 1996 to 1998: immediately after spring snowmelt, in mid-summer and in early autumn. In all, 439 zoobenthos samples were collected from 5 to 10 microhabitats of 0.1m2 in each reach and date using a standard pond net (mesh size of 250m). About 50% of individuals collected were chironomids (26673 specimens, 53 taxa), with densities ranging from 4 to 2652indm–2. With few exceptions, they dominated as number of taxa and individuals in all reaches. Chironomid subfamilies Diamesinae and Orthocladiinae were most abundant, especially in glacial reaches, where Diamesa spp. constituted up to 100% of the total fauna. Chironomid distribution was analyzed in relation to 37 abiotic variables, referring to stream origin, hydrology, geomorphology, physics and chemistry. Diamesa steinboecki, D. latitarsis gr. A and Pseudokiefferiella parva were the taxa best associated with glacial conditions (i.e. high channel instability or presence of bedrock, high suspended solids and total phosphorous content, low conductivity and silica content, highly variable diel discharge and low mean temperature), while Pseudodiamesa branickii, Corynoneura spp., Eukiefferiella spp., Parorthocladius nudipennis, Tvetenia calvescens/bavarica, Thienemaniella spp. and Micropsectra atrofasciata were mostly associated with non-glacial conditions. Substratum particle size, water depth, current velocity, the presence of riffles/pools and of mosses/algae (Hydrurus foetidus) were the major factors affecting microdistribution of chironomids in the investigated streams.  相似文献   
6.
Acidification of waters and soils caused by emissions and the long-range transport of air pollutants has been a serious worldwide problem during the last decades. The extent of the acidification problem in Finnish acid-sensitive forest lakes was examined in the Acidification Research Project (HAPRO) in the mid-1980s. The recent decline in the emissions of air pollutants has resulted in the chemical recovery of watersheds in many regions, and the present work on the recovery processes in acidified Finnish headwater lakes (REPRO) was launched to examine whether the chemical recovery has already been accompanied by biological recovery. The patterns of recovery were studied by re-sampling littoral macrozoobenthos in a subset of the previously sampled HAPRO lakes. Paleolimnological samples were taken in order to assess the possible dependence of lacustrine chironomid communities on the changing degree of acidification. Acid sensitive and moderately acid sensitive benthic species revealed slight recovery in the formerly most acidic (pH 5.5) but recently recovered lakes. The most significant factors affecting the response of benthic communities were increased mean lake pH and decreased labile aluminium concentration. Paleolimnological chironomid analysis revealed a slight response along the pH gradient, but also significant structural similarity between the present and pristine chironomid assemblages. This implies that no major changes in chironomid communities of these acidic lakes have occurred during the past centuries. The alternative future trends and threats to biological recovery in small headwater lakes are discussed.  相似文献   
7.
1. Benthivorous fish may play an important role in internal nutrient loading. Ruffe are highly specialised, feeding exclusively on bottom animals; thus all nutrients released via their feeding are derived from the bottom and are new to the water column. The fish can also release nutrients from the sediment through resuspension while searching for food. 2. The aim of this study was to estimate experimentally in the laboratory the effect on water quality of resuspension and nutrient release by ruffe and bottom animals (chironomids). 3. Ruffe released nutrients during 8 h experiments as follows: total P 1.4, dissolved PO4 0.6, total N 24.0 and NH4‐N 15.9 μg g?1 WW h?1. A decreasing trend in mass‐specific release was observed over time, probably because of starvation. The mass‐specific release of total N and NH4‐N decreased as the mean weight of fish increased. The mean ratio of excreted N : P was 32. 4. In 26 h experiments with sediment and both ruffe and chironomids, ruffe increased nutrient concentrations and turbidity values significantly but chironomids had an effect only on turbidity. Neither ruffe nor chironomids affected the ratio of inorganic N : P concentrations. An interaction between ruffe and chironomids was found for turbidity. 5. According to these results, benthivorous fish may increase nutrient concentrations in the water column and need to be taken into account when estimating internal loading.  相似文献   
8.
9.
10.
Sediment-water systems of Lake Balaton mud and tap water were constructed in plexiglass tubes and boxes for evaluation of changes in the nitrogen and phosphorus contents of overlying water as influenced by chironomid density and light conditions. Nitrogen flux from sediment was greatly influenced by denitrification process. The amount of TN released by chironomids amounted to about half of the yearly nitrogen fixation rate in Lake Balaton. Omnivorous chironomids increased the phosphorus content of the overlying water. The rate of release was density dependent. TP release rates ranged between 1–17 mg m−2 day −1 over a range of densities 500–20,000 larvae m−2. It became evident that aerobic sediment cores can be an important nutrient source in lakes where chironomids inhabit them at densities above 1,000 larvae m−2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号