首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   6篇
  2023年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
《Cell reports》2020,30(3):807-819.e4
  1. Download : Download high-res image (268KB)
  2. Download : Download full-size image
  相似文献   
2.
Allo-chimerism and clonal elimination of self antigen (Ag) (Ia + Mls-1a) reactive Vβ6+ T cells were analyzed and compared between allogeneic bone marrow (BM) chimeras reconstituted with BM cells which had been treated with anti-Thy-1 monoclonal antibody (mAb) plus complement (C) (T chimeras) and BM chimeras which had been reconstituted with BM cells pretreated with anti-Thy-1 mAb alone (T+ chimeras). When lethally irradiated AKR (Mls-1a) mice were reconstituted with BM cells from B10 or B10 H-2 congenic mice, both T+ and T chimeras were entirely free of signs of graft-versus-host reaction (GVHR). However, complete replacement of the AKR lymphoid tissues by donor BM cells was accomplished at an early stage in T+ chimeras but not in T chimeras. On the other hand, clonal elimination of Vβ6+ T cells reactive to the recipient Ag (Mls-1a) was abolished in T+ chimeras but successfully induced in T chimeras. The Vβ6+ T cells not eliminated in T+ chimeras showed depressed responses against Mls-1a antigens. The findings herein demonstrate that T cells which contaminate a BM inoculum survive in recipient mice after treatment with anti-Thy-1 mAb without C in vitro followed by BMT. The surviving T cells have been estimated to represent fewer than 0.5% of the BM cells inoculated. These cells appear to accelerate the full replacement of recipient lymphoid tissues by donor cells. Furthermore, the T cells which survive in the marrow inoculum influence eventually the development of a tolerant state in the T cell repertoire of the donor.  相似文献   
3.
Little is known about the number and rate of introductions into terrestrial and marine tropical regions, and if introduction patterns and processes differ from temperate latitudes. Botryllid ascidians (marine invertebrate chordates) are an interesting group to study such introduction differences because several congeners have established populations across latitudes. While temperate botryllid invasions have been repeatedly highlighted, the global spread of tropical Botrylloides nigrum (Herdman, 1886) has been largely ignored. We sampled B. nigrum from 16 worldwide warm water locations, including around the Panama Canal, one of the largest shipping hubs in the world and a possible introduction corridor. Using mitochondrial (COI) and nuclear (ANT) markers, we discovered a single species with low genetic divergence and diversity that has established in the Atlantic, Pacific, Indo‐Pacific, and Mediterranean Oceans. The Atlantic Ocean contained the highest diversity and multilocus theta estimates and may be a source for introductions to other regions. A high frequency of one mitochondrial haplotype was detected in Pacific populations that may represent a recent introduction in this region. In comparison to temperate relatives, B. nigrum displayed lower (but similar to temperate Botrylloides violaceus) genetic divergence and diversity at both loci that may represent a more recent global spread or differences in introduction pressures in tropical regions. Additionally, chimeras (genetically distinct individuals sharing a single body) were detected in three populations by the mitochondrial locus and validated using cloning, and these individuals contained new haplotype diversity not detected in any other colonies.  相似文献   
4.
Background aimsAllogeneic hematopoietic stem cell transplantation is curative for sickle cell disease, and the use of matched related donors, non-myeloablative conditioning and sirolimus immunosuppression results in stable mixed chimerism without graft-versus-host disease (GVHD). However, the time to terminate sirolimus while maintaining mixed chimerism is unclear.MethodsIn this study, we developed a two-way mixed lymphocyte reaction (MLR) to evaluate ex vivo immunoreaction in mixed chimeric patients.ResultsIn co-culture of peripheral blood mononuclear cells (PBMCs) from two healthy controls (without irradiation), we detected proliferation at various ratios of PBMC mixtures (1:9 to 9:1) as well as various concentrations of sirolimus, suggesting that two-way MLR is applicable to patients (having >10% chimerism) undergoing sirolimus treatment. In two-way MLR using PBMCs (including donor and recipient cells) from mixed chimeric patients (n = 28), greater ex vivo proliferation was observed <6 months compared with >6 months post-transplant and healthy control PBMC monoculture. Robust ex vivo proliferation was observed in a patient with acute GVHD, and persistent ex vivo proliferation (until 2 years) was observed in a patient with decreasing donor chimerism.ConclusionsIn summary, we demonstrated that in two-way MLR, ex vivo immunoreaction decreases to low levels ~6 months post-transplant. These findings suggest a rationale to continue immunosuppression for 6 months.  相似文献   
5.
6.
Mutation discovery technologies have enabled the development of reverse genetics for many plant species and allowed sophisticated evaluation of the consequences of mutagenesis. Such methods are relatively straightforward for seed‐propagated plants. To develop a platform suitable for vegetatively propagated species, we treated isolated banana shoot apical meristems with the chemical mutagen ethyl methanesulphonate, recovered plantlets and screened for induced mutations. A high density of GC‐AT transition mutations were recovered, similar to that reported in seed‐propagated polyploids. Through analysis of the inheritance of mutations, we observed that genotypically heterogeneous stem cells resulting from mutagenic treatment are rapidly sorted to fix a single genotype in the meristem. Further, mutant genotypes are stably inherited in subsequent generations. Evaluation of natural nucleotide variation showed the accumulation of potentially deleterious heterozygous alleles, suggesting that mutation induction may uncover recessive traits. This work therefore provides genotypic insights into the fate of totipotent cells after mutagenesis and suggests rapid approaches for mutation‐based functional genomics and improvement of vegetatively propagated crops.  相似文献   
7.
Chimerism is produced by the somatic fusion of two or more genetically distinct conspecific individuals. In animals, the main cost of fusion is competition between genetically different cell lineages and the probability of original cell line replacement by more competitive invasive lines, which limits its natural frequency (3%–5%). In red and brown seaweeds, chimerism is widespread (27%–53%), seemingly without the negative outcomes described for animals. The rigidity of cell walls in macroalgae prevents cell motility and invasions. In addition, in moving waters, most somatic fusions involve the holdfast. Histological observations in laboratory‐built bicolor macroalgal chimeras indicated that upright axes emerge from the base of plants by proliferation and vertical growth of discrete cell groups that include one or just a few of the cell lineages occurring in the holdfasts. Laboratory experiments showed growth competition between cell lineages, thus explaining lineage segregation during growth along originally chimeric erect axes. Genotyping of the axes showed more heterogeneous tissues basally, but apically more homogeneous ones, generating a vertical gradient of allele abundance and diversity. The few chimeric primary branches produced, eventually became homogenous after repeated branching. Therefore, coalescing macroagae exhibit a unique pattern of post‐fusion growth, with the capacity to reverse chimerism. This pattern is significantly different from those in animals and land plants, suggesting chimerism is a biologically heterogeneous concept.  相似文献   
8.
KCNJ11-encoded Kir6.2 assembles with ATP-binding cassette sulphonylurea receptors to generate ATP-sensitive K+ (KATP) channel complexes. Expressed in tissues with dynamic metabolic flux, these evolutionarily conserved yet structurally and functionally unique heteromultimers serve as high-fidelity rheostats that adjust membrane potential-dependent cell functions to match energetic demand. Genetic defects in channel subunits disrupt the cellular homeostatic response to environmental stress, compromising organ tolerance in the adult. As maladaptation characterizes malignant KATP channelopathies, establishment of platforms to examine progression of KATP channel-dependent adaptive behaviour is warranted. Chimeras provide a powerful tool to assay the contribution of genetic variance to stress intolerance during prenatal or post-natal development. Here, KCNJ11 KATP channel gene knockout<-->wild-type chimeras were engineered through diploid aggregation. Integration of wild-type embryonic stem cells into zona pellucida-denuded morula derived from knockout embryos achieved varying degrees of incorporation of stress-tolerant tissue within the KATP channel-deficient background. Despite the stress-vulnerable phenotype of the knockout, ex vivo derived mosaic blastocysts tolerated intrauterine transfer and implantation, followed by full-term embryonic development in pseudopregnant surrogates to produce live chimeric offspring. The development of adult chimerism from the knockout<-->wild-type mosaic embryo offers thereby a new paradigm to probe the ecogenetic control of the KATP channel-dependent stress response.  相似文献   
9.
Given our recent finding that the lymph node (LN) can serve as an in vivo factory to generate complex structures like liver, pancreas, and thymus, we investigated whether LN could also support early development and maturation from several mid-embryonic (E14.5/15.5) mouse tissues including brain, thymus, lung, stomach, and intestine. Here we observed brain maturation in LN by showing the emergence of astrocytes with well-developed branching processes. Thymus maturation in LN was monitored by changes in host immune cells. Finally, newly terminally differentiated mucus-producing cells were identified in ectopic tissues generated by transplantation of lung, stomach and intestine in LN. Thus, we speculate the LN offers a unique approach to study the intrinsic and extrinsic differentiation potential of cells and tissues during early development, and provides a new site for bioengineering complex body parts.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号