首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   6篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有31条查询结果,搜索用时 687 毫秒
1.
Water‐holding soil amendments such as super‐absorbent polymer (SAP) may improve native species establishment in restoration but may also interact with precipitation or invasive species such as Bromus tectorum L. (cheatgrass or downy brome) to influence revegetation outcomes. We implemented an experiment at two sites in Colorado, U.S.A., in which we investigated the interactions of drought (66% reduction of ambient rainfall), B. tectorum seed addition (BRTE, 465 seeds/m2), and SAP soil amendment (25 g/m2) on initial plant establishment and 3‐year aboveground and belowground biomass and allocation. At one site, SAP resulted in higher native seeded species establishment but only with ambient precipitation. However, by the third year, we detected no SAP effects on native seeded species biomass. Treatments interacted to influence aboveground and belowground biomass and allocation differently. At one site, a SAP × precipitation interaction resulted in lower belowground biomass in plots with SAP and drought (61.7 ± 7.3 g/m2) than plots with drought alone (91.6 ± 18.1 g/m2). At the other site, a SAP × BRTE interaction resulted in higher belowground biomass in plots with SAP and BRTE (56.6 ± 11.2 g/m2) than BRTE alone (35.0 ± 3.7 g/m2). These patterns were not reflected in aboveground biomass. SAP should be used with caution in aridland restoration because initial positive effects may not translate to long‐term benefits, SAP may uniquely influence aboveground versus belowground biomass, and SAP can interact with environmental variables to impact developing plant communities in positive and negative ways.  相似文献   
2.
Larger and more frequent disturbances are motivating efforts to accelerate recovery of foundational perennial species by focusing efforts into establishing island patches to sustain keystone species and facilitate recovery of the surrounding plant community. Evaluating the variability in abiotic and biotic factors that contribute to differences in survival and establishment can provide useful insight into the relative importance of these factors. In the western United States, severe degradation of the sagebrush steppe has motivated substantial efforts to restore native perennial cover, but success has been mixed. In this study, we evaluated survival of more than 3,000 sagebrush seedlings transplanted on 12 patches totaling 650 ha within a 113,000 ha burn area, and related the survival to organismal and subtaxonomic traits, and to landscape variables. Big sagebrush has high intraspecific diversity attributed to subspecies and cytotypes identifiable through ultraviolet (UV)‐induced fluorescence, length:width of leaves, or genome size (ploidy). Of these organismal traits, survival was related only to UV fluorescence, and then only so when landscape variables were excluded from analyses. The most significant landscape variable affecting survival was soil taxonomic subgroup, with much lower survival where buried restrictive layers reduce deep water infiltration. Survival also decreased with greater slope steepness, exotic annual grass cover, and burn severity. Survival was optimal where perennial bunchgrasses comprised 8–14% of total cover. These soil, topographic, and community condition factors revealed through monitoring of landscape‐level treatments can be used to explain the success of plantings and to strategically plan future restoration projects.  相似文献   
3.
Movement of Weed Seeds in Reclamation Areas   总被引:1,自引:0,他引:1  
The presence or absence of obstructions can affect seed dispersal. Reclamation activities often cause changes in the type and amount of such obstructions. The consequences of removing obstructions on the dispersal of undesirable species are unknown. In western North America, reclamation may often proceed in areas surrounded by the invasive Bromus tectorum L. (cheatgrass). The importance of preventing cheatgrass seed dispersal from surrounding landscapes is an unknown factor in reducing cheatgrass competition in these areas. I quantified cheatgrass seed dispersal in the early stages of reclamation, when soils were bare. Four groups of 100 sterilized, fluorescently marked cheatgrass seeds were released in each of three areas in NW Colorado, USA. Seeds were located at night using blacklights four times over 14 days, and the distance between each seed and the point of release was measured. Across sites, dispersal distance averaged 2.4 m, 5% of seeds traveled further than 7.6 m, and maximum recorded distance was 20.8 m. Maximum distances reported in this study are 50‐fold higher than previously reported for intact sagebrush ecosystems. I suggest that the difference is due to a lack of impediments to secondary dispersal on bare soil. When reclamation areas are surrounded by weeds such as cheatgrass, seeds dispersing from the perimeter may influence restoration outcome.  相似文献   
4.
Vegetation characteristics were assessed on three sets of 10‐year‐old test plots and one set of 5‐year‐old plots that received 0, 34, 45, and 67 tons/ha (0, 15, 20, and 30 short tons/acre) of biosolids at a semiarid mine reclamation site in Utah. On average, noxious weed species such as Bromus tectorum L. (cheatgrass) provided two‐thirds of the cover on the biosolids test plots, but only one‐tenth of the cover on adjacent control plots that received no biosolids. Cheatgrass provided more than half of the total cover on every biosolids test plot. Seeded species provided about two times more cover at the control plots than at the biosolids plots. Surfaces treated with 45 tons/ha composted biosolids (one part biosolids and two parts wood chips) had a much lower percentage of noxious weed cover compared to biosolids alone. The relatively heavy initial nitrogen load associated with biosolids application may have promoted cheatgrass dominance. Although the available nitrogen eventually declines, once cheatgrass is established it may maintain its dominance indefinitely. Given the risk of weed invasion, heavy biosolids applications should be used with caution for reclamation projects in semiarid climates if perennial species establishment is desired. Consideration should instead be given to light applications (<45 tons/ha) of biosolids/wood chip compost or forgoing the use of biosolids entirely. The underapplication of nutrients may provide a slower, but ultimately more reliable, strategy for the establishment of a healthy, native perennial vegetation community.  相似文献   
5.
? Premise of the study: The mechanisms for range expansion in invasive species depend on how genetic variation is structured in the introduced range. This study examined neutral genetic variation in the invasive annual grass Bromus tectorum in the Intermountain Western United States. Patterns of microsatellite (SSR) genotype distribution in this highly inbreeding species were used to make inferences about the roles of adaptively significant genetic variation, broadly adapted generalist genotypes, and facultative outcrossing in the recent range expansion of B. tectorum in this region. ? Methods: We sampled 20 individuals from each of 96 B. tectorum populations from historically and recently invaded habitats throughout the region and used four polymorphic SSR markers to characterize each individual. ? Key results: We detected 131 four-locus SSR genotypes; however, the 14 most common genotypes collectively accounted for 79.2% of the individuals. Common SSR genotypes were not randomly distributed among habitats. Instead, characteristic genotypes sorted into specific recently invaded habitats, including xeric warm and salt desert as well as mesic high-elevation habitats. Other SSR genotypes were common across a range of historically invaded habitats. We observed very few heterozygous individuals (0.58%). ? Conclusions: Broadly adapted, generalist genotypes appear to dominate historically invaded environments, while recently invaded salt and warm desert habitats are dominated by distinctive SSR genotypes that contain novel alleles. These specialist genotypes are not likely to have resulted from recombination; they probably represent more recent introductions from unknown source populations. We found little evidence that outcrossing plays a role in range expansion.  相似文献   
6.
Restoration of shrubs in arid and semi‐arid rangelands is hampered by low success rates. Planting shrub seedlings is a method used to improve success in these rangelands; however, it is expensive and labor intensive. The efficiency of shrub restoration could be improved by identifying microsites where shrub survival is greater. Bitterbrush (Purshia tridentata Pursh DC) is an important shrub to wildlife that has declined because of conifer encroachment, excessive defoliation, wildfires, and low recruitment. We investigated planting bitterbrush seedlings in western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroached shrublands after prescribed fire was used to control trees. Bitterbrush seedlings were planted in under (canopy) and between (interspace) former juniper canopies at five blocks and evaluated for three growing seasons. Bitterbrush survival was greater than 50% in the former canopy, but only 5% in the interspace microsite by the third growing season. Growth of bitterbrush was also greater in the former canopy compared with the interspace, potentially due to markedly less perennial vegetation in this microsite. Exotic annual grasses and annual forbs became prevalent in the former canopy in the second and third growing season, suggesting that soil resource availability was greater in this microsite. These results suggest that restoration success will vary by specific locations within a burned landscape and that this variability can be used to improve restoration efficiency. In this situation, bitterbrush restoration can be improved by planting seedlings in former canopy compared with interspace microsites.  相似文献   
7.
A better understanding of seed movement in plant community dynamics is needed, especially in light of disturbance‐driven changes and investments into restoring degraded plant communities. A primary agent of change within the sagebrush‐steppe is wildfire and invasion by non‐native forbs and grasses, primarily cheatgrass (Bromus tectorum). Our objectives were to quantify seed removal and evaluate ecological factors influencing seed removal within degraded sagebrush‐steppe by granivorous Owyhee harvester ants (Pogonomyrmex salinus Olsen). In 2014, we sampled 76 harvester ant nests across 11 plots spanning a gradient of cheatgrass invasion (40%–91% cover) in southwestern Idaho, United States. We presented seeds from four plant species commonly used in postfire restoration at 1.5 and 3.0 m from each nest to quantify seed removal. We evaluated seed selection for presented species, monthly removal, and whether biotic and abiotic factors (e.g., distance to nearest nest, temperature) influenced seed removal. Our top model indicated seed removal was positively correlated with nest height, an indicator of colony size. Distance to seeds and cheatgrass canopy cover reduced seed removal, likely due to increased search and handling time. Harvester ants were selective, removing Indian ricegrass (Achnatherum hymenoides) more than any other species presented. We suspect this was due to ease of seed handling and low weight variability. Nest density influenced monthly seed removal, as we estimated monthly removal of 1,890 seeds for 0.25 ha plots with 1 nest and 29,850 seeds for plots with 15 nests. Applying monthly seed removal to historical restoration treatments across the western United States showed harvester ants can greatly reduce seed availability at degraded sagebrush sites; for instance, fourwing saltbush (Atriplex canescens) seeds could be removed in <2 months. Collectively, these results shed light on seed removal by harvester ants and emphasize their potential influence on postfire restoration within invaded sagebrush communities.  相似文献   
8.
9.
10.
Global change is likely to affect invasive species distribution, especially at range margins. In the eastern Sierra Nevada, California, USA, the invasive annual grass, Bromus tectorum, is patchily distributed and its impacts have been minimal compared with other areas of the Intermountain West. We used a series of in situ field manipulations to determine how B. tectorum might respond to changing climatic conditions and increased nitrogen deposition at the high‐elevation edge of its invaded range. Over 3 years, we used snow fences to simulate changes in snowpack, irrigation to simulate increased frequency and magnitude of springtime precipitation, and added nitrogen (N) at three levels (0, 5, and 10 g m?2) to natural patches of B. tectorum growing under the two dominant shrubs, Artemisia tridentata and Purshia tridentata, and in intershrub spaces (INTR). We found that B. tectorum seedling density in April was lower following deeper snowpack possibly due to delayed emergence, yet there was no change in spikelet production or biomass accumulation at the time of harvest. Additional spring rain events increased B. tectorum biomass and spikelet production in INTR plots only. Plants were primarily limited by water in 2009, but colimited by N and water in 2011, possibly due to differences in antecedent moisture conditions at the time of treatments. The threshold at which N had an effect varied with magnitude of water additions. Frequency of rain events was more influential than magnitude in driving B. tectorum growth and fecundity responses. Our results suggest that predicted shifts from snow to rain could facilitate expansion of B. tectorum at high elevation depending on timing of rain events and level of N deposition. We found evidence for P‐limitation at this site and an increase in P‐availability with N additions, suggesting that stoichiometric relationships may also influence B. tectorum spread.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号