首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   7篇
  2023年   5篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1987年   1篇
  1985年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
Neuropeptide Y (NPY) is an evolutionarily conserved neurosecretory molecule implicated in a diverse complement of functions across taxa and in regulating feeding behavior and reproductive maturation in Octopus. However, little is known about the precise molecular circuitry of NPY-mediated behaviors and physiological processes, which likely involve a complex interaction of multiple signal molecules in specific brain regions. Here, we examined the expression of NPY throughout the Octopus central nervous system. The sequence analysis of Octopus NPY precursor confirmed the presence of both, signal peptide and putative active peptides, which are highly conserved across bilaterians. In situ hybridization revealed distinct expression of NPY in specialized compartments, including potential “integration centers,” where visual, tactile, and other behavioral circuitries converge. These centers integrating separate circuits may maintain and modulate learning and memory or other behaviors not yet attributed to NPY-dependent modulation in Octopus. Extrasomatic localization of NPY mRNA in the neurites of specific neuron populations in the brain suggests a potential demand for immediate translation at synapses and a crucial temporal role for NPY in these cell populations. We also documented the presence of NPY mRNA in a small cell population in the olfactory lobe, which is a component of the Octopus feeding and reproductive control centers. However, the molecular mapping of NPY expression only partially overlapped with that produced by immunohistochemistry in previous studies. Our study provides a precise molecular map of NPY mRNA expression that can be used to design and test future hypotheses about molecular signaling in various Octopus behaviors.  相似文献   
2.
The renal organs of 32 species of cephalopods (renal appendage of all cephalopods, and renal and pancreatic appendages in decapods) were examined for parasite fauna and for histological comparison. Two phylogenetically distant organisms, dicyemid mesozoans and chromidinid ciliates, were found in 20 cephalopod species. Most benthic cephalopods (octopus and cuttlefish) were infected with dicyemids. Two pelagic cephalopod species, Sepioteuthis lessoniana and Todarodes pacificus, also harbored dicyemids. Chromidinid ciliates were found only in decapods (squid and cuttlefish). One dicyemid species was found in branchial heart appendages of Rossia pacifica. Dicyemids and chromidinids occasionally occurred simultaneously in Euprymna morsei, Sepia kobiensis, S. peterseni, and T. pacificus. The small-sized cephalopod species, Idiosepius paradoxus and Octopus parvus, harbored no parasites. Comparative histology revealed that the external surface of renal organs varies morphologically in various cephalopod species. The small-sized cephalopod species have a simple external surface. In contrast, the medium- to large-sized cephalopod species have a complex external surface. In the medium- to large-sized cephalopod species, their juveniles have a simple external surface of the renal organs. The external surface subsequently becomes complicated as they grow. Dicyemids and chromidinids attach their heads to epithelia or insert their heads into folds of renal appendages, pancreatic appendages, and branchial heart appendages. The rugged and convoluted external surface provides a foothold for dicyemids and chromidinids with a conical head. They apparently do not harm these tissues of their host cephalopods.  相似文献   
3.
4.
Juvenile cuttlefish (Sepia officinalis) camouflage themselves by changing their body pattern according to the background. This behaviour can be used to investigate visual perception in these molluscs and may also give insight into camouflage design. Edge detection is an important aspect of vision, and here we compare the body patterns that cuttlefish produced in response to checkerboard backgrounds with responses to backgrounds that have the same spatial frequency power spectrum as the checkerboards, but randomized spatial phase. For humans, phase randomization removes visual edges. To describe the cuttlefish body patterns, we scored the level of expression of 20 separate pattern 'components', and then derived principal components (PCs) from these scores. After varimax rotation, the first component (PC1) corresponded closely to the so-called disruptive body pattern, and the second (PC2) to the mottle pattern. PC1 was predominantly expressed on checkerboards, and PC2 on phase-randomized backgrounds. Thus, cuttlefish probably have edge detectors that control the expression of disruptive pattern. Although the experiments used unnatural backgrounds, it seems probable that cuttlefish display disruptive camouflage when there are edges in the visual background caused by discrete objects such as pebbles. We discuss the implications of these findings for our understanding of disruptive camouflage.  相似文献   
5.
Cephalopods, and in particular the cuttlefish Sepia officinalis, are common models for studies of camouflage and predator avoidance behaviour. Preventing detection by predators is especially important to this group of animals, most of which are soft-bodied, lack physical defences, and are subject to both visually and non-visually mediated detection. Here, we report a novel cryptic mechanism in S. officinalis in which bioelectric cues are reduced via a behavioural freeze response to a predator stimulus. The reduction of bioelectric fields created by the freeze-simulating stimulus resulted in a possible decrease in shark predation risk by reducing detectability. The freeze response may also facilitate other non-visual cryptic mechanisms to lower predation risk from a wide range of predator types.  相似文献   
6.
Aggressive constricting including asphyxiation was observed in wild octopuses (Octopus cyanea Gray, 1849, and Wunderpus photogenicus Hochberg, Norman & Finn, 2006 Hochberg, F.G., Norman, M.D. & Finn, J. (2006) Wunderpus photogenicus n. gen. and sp., a new Octopus from the shallow waters of the Indo-Malayan Archipelago (Cephalopoda: Octopodidae). Molluscan Research 26, 128140.[Web of Science ®] [Google Scholar]). The distal portion of a dorsolateral arm formed a loop around the mantle of another octopus, in at least one case preventing the flow of water into the mantle, over the gills and out of the funnel. Constricting also may have prevented the subordinate individual from releasing ink, a possible irritant and predator attractant. A female O. cyanea used constricting as a form of fatal aggression to asphyxiate a male as part of apparent sexual cannibalism. This female killed a male with which she was mating using the ‘distance’ position. Constriction allowed a W. photogenicus to win during physical interspecific aggression with a close relative, Thaumoctopus mimicus Norman & Hochberg, 2005 Norman, M.D. & Hochberg, F.G. (2005) The ‘Mimic Octopus’ (Thaumoctopus mimicus n. gen. et. sp.), a new octopus from the tropical Indo-West Pacific (Cephalopoda: Octopodidae). Molluscan Research 25, 5770. [Google Scholar]. This action took place near an immediately available food source and interrupted foraging by T. mimicus, providing possible evidence of interference competition among closely related sympatric cephalopod species in the wild.  相似文献   
7.
A morphological dataset based on 14 standard counts and indices was constructed for 68 specimens comprising 12 species of octopuses. This was used to construct distance matrices based on morphological characters. These matrices were compared with genetic distance matrices compiled during molecular phylogenetic analyses of the same 12 species using four mitochondrial and two nuclear genes. Mantel tests showed that there was significant congruence between the phenetic and genetic matrices, suggesting that the genetic signal is reflected in the morphological data set. Matrices of geographical distance were constructed for the 12 species based on the latitude, longitude, and depth of capture of 1726 individuals. These matrices never showed significant congruence with genetic data or with morphological data. Multivariate analysis of the morphological dataset suggests that these counts and indices, traditionally used for discriminating between species in cephalopods, do not show great discrimination at species level, but provide excellent discrimination at the generic level, and, as such, might be useful for resolving the generic placement of some problematic taxa. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 205–218.  相似文献   
8.
The arrangement of the musculature and connective tissues of the buccal mass of the coleoid cephalopods Octopus bimaculoides, Sepia officinalis, and Loliguncula brevis was examined using dissection and histology. Serial sections in three mutually perpendicular planes were used to identify the muscles and connective tissues responsible for beak movements and stability and to describe their morphology and fiber trajectories. Four major beak muscles were identified: the anterior, posterior, superior, and lateral mandibular muscles. The anterior, posterior, and superior mandibular muscles connect the upper beak and the lower beak. Although the lateral mandibular muscles originate on the upper beak, they do not connect to the lower beak and instead insert on a connective tissue sheath surrounding the buccal mass. Examination of the fibers of the lateral mandibular muscles reveals that they have the organization of a muscular hydrostat, with muscle fibers oriented in three mutually perpendicular orientations. Although the beaks are capable of complex opening, closing, and shearing movements, they do not contact one another and are instead connected only by the musculature of the buccal mass. Based on the morphological analysis and observations of freshly dissected beaks undergoing the stereotyped bite cycle, the functional role of the beak muscles is hypothesized. The anterior and superior mandibular muscles are likely responsible for beak closing and shearing movements. The posterior mandibular muscle is likely also involved in beak closing, but may act synergistically with the lateral mandibular muscles to open the beaks. The lateral mandibular muscles may use a muscular-hydrostatic mechanism to control the location of the pivot between the beaks and to generate the force required for beak opening. The lack of contact between the beaks and the morphology of the lateral mandibular muscles suggests that the buccal mass of coleoid cephalopods may represent a previously unexamined flexible joint mechanism. The term "muscle articulation" is proposed here to denote the importance of the musculature in the function of such a joint.  相似文献   
9.
10.
《Global Change Biology》2018,24(6):2585-2596
There is increasing evidence that projected near‐future carbon dioxide (CO2) levels can alter predator avoidance behaviour in marine invertebrates, yet little is known about the possible effects on predatory behaviours. Here we tested the effects of elevated CO2 on the predatory behaviours of two ecologically distinct cephalopod species, the pygmy squid, Idiosepius pygmaeus, and the bigfin reef squid, Sepioteuthis lessoniana. Both species exhibited an increased latency to attack and altered body pattern choice during the attack sequence at elevated CO2. I. pygmaeus also exhibited a 20% decrease in predation rate, an increased striking distance, and reduced preference for attacking the posterior end of prey at elevated CO2. Elevated CO2 increased activity levels of S. lessoniana comparable to those previously shown in I. pygmaeus, which could adversely affect their energy budget and increase their potential to be preyed upon. The effects of elevated CO2 on predatory behaviours, predation strategies and activity levels of cephalopods reported here could have far‐reaching consequences in marine ecosystems due to the ecological importance of cephalopods in the marine food web.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号