首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   49篇
  国内免费   8篇
  2023年   7篇
  2022年   6篇
  2021年   16篇
  2020年   25篇
  2019年   26篇
  2018年   20篇
  2017年   11篇
  2016年   9篇
  2015年   23篇
  2014年   22篇
  2013年   26篇
  2012年   21篇
  2011年   18篇
  2010年   11篇
  2009年   9篇
  2008年   11篇
  2007年   10篇
  2006年   5篇
  2005年   9篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
1.
Juvenile Terebratalia transversa (Brachiopoda) metabolize carbohydrates in the anterior-most marginal mantle at a rate of 0.46 μM glucose/g/hr (in vitro incubation of mantle in C14-glucose in a carrying medium of 10-3 M non-radioactive glucose). The rate declines to 0.18μM glucose/g/hr in full-grown specimens. Carbohydrate metabolism in the marginal (anterior-most) mantle averages approximately 3.7 times greater than metabolism in (a portion of the ‘posterior’) mantle situated between the coelomic canals and the marginal mantle. This ratio remains constant in specimens of all sizes (i.e. an ontogenetic trend in the ratio is absent at p≤ 0.05). Organic acids are not detectable within the mantle (HPLC techniques) even after simulated anoxia (N2 bubbling during mantle incubation). Glucose metabolism in vitro declines in both the marginal and ‘posterior’ mantles during anoxia and the metabolic ratio between marginal/‘posterior’ mantles becomes 1/1. We found no difference (at p≤ 0.05) in mean metabolic activity or in sue-related metabolic trends among populations from depths ranging between mean sea level and 70 m. However, the activity within the ‘posterior’ mantle was more variable in specimens from 70 m than in those from shallower habitats (10 m - mean sea level). The size of the specimens analyzed was most variable in the groups obtained from the shallowest habitats and least variable at 70 m depth. Our results may help define the energetics of fossil as well as living brachiopod shell growth. Brachiopod shell growth is known to be very slow relative to that of bivalves and our results indicate that this is a result of the animals' slow metabolism. The inflation of the valves in T. transversa is, in part, a function of the high ratio of intermediary metabolism in the marginal vs‘posterior’ mantle (i.e. parallels the relative growth rates at the shell margin vs‘posterior’ areas). We found that the bivalve, Chlamys hastata, which is commonly associated with T. transversa, has a lower ratio of metabolic activities in the ventral/dorsal mantle areas than the brachiopod has in the anterior/posterior. The difference produces a flatter shell in the bivalve in accord with allometric principles. The higher metabolic rate in the marginal vs‘posterior’ brachiopod mantle and its more pronounced decline with anaerobiosis is reflected in the greater definition of growth increments in the outer shell layer. Our results do not support recent generalizations that correlate shell thickness of a wide variety of invertebrates inversely with metabolic rate. Growth rate as determined from width of shell growth increments is a better index of metabolic rate. Although the genetic basis of glucose metabolism is unknown, the observed metabolic variability is consistent with suggestions that populations of marine organisms living in stable offshore environments are genetically more variable but morphologically more uniform than populations from shallow water. Furthermore, our results support suggestions that bivalved molluscs and brachiopods are very different metabolically, but the data are neutral with respect to theories of competitive exclusion of the two taxa throughout geologic history.  相似文献   
2.
The relationships among inorganic carbon transport, bicarbonate availability, intracellular pH, and culture age were investigated in high-calcifying cultures of Emiliania huxleyi (Lohmann) Hay & Mohler. Measurement of inorganic carbon transport by the silicone-oil centrifugation technique demonstrated that gadolinium, a potential Ca2+ channel inhibitor, blocked intracellular inorganic carbon uptake and photosynthetic 14CO2+ fixation in exponential-phase cells. In stationary-phase cells, the intracellular inorganic carbon concentration was unaffected by gadolinium. Gadolinium was also used to investigate the link between bicarbonate and Ca2+ transport in high-calcifying cells of E. huxleyi. Bicarbonate availability had significant and rapid effects on pHi in exponential- but not in stationary-phase cells. 4′, 4′-Diisothiocyanostilbene-2,2′-disulfonic acid did not block bicarbonate uptake from the external medium by exponential-phase cells. Inorganic carbon utilization by exponential- and stationary-phase cells of Emiliania huxleyi was investigated using a pH drift technique in a closed system. Light-dependent alkalization of the medium by stationary-phase cells resulted in a final pH of 10.1 and was inhibited by dextran-bound sulphonamide, an inhibitor of external carbonic anhydrase. Exponential-phase cells did not generate a pH drift. Overall, the results suggest that for high-calcifying cultures of E. huxleyi the predominant pathway of inorganic carbon utilization differs in exponential and stationary phase cells of the same culture.  相似文献   
3.
Changes in the species composition, photosynthesis, calcification and size-fractionated carbon metabolism by natural phytoplankton assemblages were monitored in three mesocosms under different nutrient conditions during May 1993. In the 3 enclosures, the decline of the diatom-dominated assemblages was followed by the development of a bloom of the coccolithoporid Emiliania huxleyi. Highest growth of E. huxleyi was observed in the mesocosm with a high N : P ratio, suggesting this species is a good competitor at low phosphate concentrations. The transition from diatom- to E. huxleyi-dominated assemblages brought about a sharp reduction of the phytoplankton standing stock and carbon-specific photosynthetic rate. The relative contribution of the smaller size fraction to total photosynthesis increased as the succession progressed. Calcification rate and E. huxleyi cell-specified calcite production were highest during the early stages of development of the E. huxleyi bloom. Distinct changes in the patterns of 14C allocation into biomolecules were noticed during the diatom-E. huxleyi succession. The diatom-dominated assemblage showed high relative 14C incorporation into low molecular weight metabolites (LMWM), whereas proteins and, specially, lipids accounted for the largest proportion of carbon incorporation in the E. huxleyi bloom. The patterns of photoassimilated carbon metabolism proved to be strongly dependent on cellular size, as protein relative synthesis was significantly higher in the smaller than in the larger size fraction, irrespective of the nutrient regime and the successional stage. These results are discussed in relation to the ecological and physiological features of small phytoplankton.  相似文献   
4.
Light-saturated photosynthesis (Pmax) of Emiliania huxleyi (Lohmann) Hay et Mohler is known to be carbonlimited at natural concentrations of dissolved inorganic carbon (DIC). In the present study, light-limited and light-saturated photosynthetic rates of E. huxleyi were studied at three concentrations of DIC (2.4, 7.4, and 12.4 mM) for high-calcite (Cin/Ctot=0.48) and low-calcite (Cin/Ctot=0.08) cells of the same strain. The photosynthetic efficiency (α) and the maximum quantum yieldmax)A increased by more than a factor of 2 from the lowest to the highest DIC level. Pmax a, and θmax were always higher for the high-calcite than for the low-calcite cells at identical DIC levels. This may indicate that the calcifcation process acts as an extra supplier of CO2 for photosynthesis making the CO2 shortage at natural DIC levels a little smaller for high-calcite than for low-calcite E. huxleyi. A dependency of θmax on DIC has not previously been shown for marine phytoplankton. θmax is a key parameter in recent biooptical models of phytoplankton productivity, and the results from the present study are therefore important for modeling the productivity of E. huxleyi.  相似文献   
5.
The ultrastructure of 4 species of the calcareous, siphonaceous alga Halimeda (H. cylindracea Decaisne, H. discoidea Decaisne, H. macroloba Decaisne and H. tuna (Ellis & Solander) Lamour) has been studied, and the observed changes during growth and development are related to changes in the degree of calcification. A distinct gradient in the types and quantities of cell organelles exists in a growing apical filament. As these filaments grow, branch, and eventually develop into a mature segment, changes in the organization of organelles such as mitochondria and chloroplasts are observed. Calcification begins when the chloroplasts reach structural maturity and when the peripheral utricles adhere (fuse). This adhesion of the peripheral utricles isolates the intercellular space (ICS) in which calcification occurs from the external seawater. Calcification begins in the outermost (pilose) cell wall layer of the walls facing into the ICS. The cell walls at the thallus exterior undergo extensive changes after utricular fusion; the pilose layer is lost, the cuticles of adjacent utricles fuse forming a ridge at their junction, and multiple cuticles are formed. The aragonite (CaCO3) crystals which are initially precipitated within the pilose wall layer, rapidly increase in size and number, eventually filling much of the ICS. Only the initial nucleation of aragonite is associated with the pilose wall layer, the later precipitation of aragonite is totally independent of the pilose layer. In older segments secondary deposition of CaCO3 also occurs around existing aragonite needles.  相似文献   
6.
Rates of carbon fixation in coccolithophorids in culture, unlike many other algae, are carbon limited at ambient levels of dissolved inorganic carbon (DIC). Apparently, plants often rely on activity of carbonic anhydrase (CA) to raise the level of CO2 in cells and achieve carbon saturation. However, CA activities in the coccolithophorids, Coccolithus (= Emiliania) huxleyi Lohmann and Hymenomonas (=Cricosphaera) carterae Braarud, were either not detectable or very low compared to activities in other systems, including other algae, higher plants, and representative animals. Furthermore, additions of CA to medium with 2 mM DIC at pH 8.1 resulted in nearly 30% enhancement of photosynthesis, but not coccolith formation. Although carbon fixation in coccolithophorids can be suppressed by the CA inhibitor acetazolamide, studies of CaCO3 nucleation revealed a non-specific effect of the inhibitor. Using a 30 min assay based on pH decreases accompanying loss of dissolved. CO32-, inhibition of crystal formation in the absence of CA at 1 mM acetazolamide was demonstrated for decalcified crab carapace, a tissue with which normal CaCo3 deposition in vitro has been shown. The results suggest only a minor role for CA in coccolithophorids.  相似文献   
7.
Cells of Coccolithus huxleyi which fail to deposit CaCO3 and form coccoliths often occur as unwanted components in cultures used for studies of calcification. Non-calcified cells generally cannot be made to recalcify, but they can be removed from cultures by treatment at elevated pH or by a method based on faster sinking of calcified cells. Lowering the concentrations of nitrate, phosphate, or trace metals in the medium did not restore calcifying ability of non-calcified cells. However, addition of strontium did promote recalcification of decalcified Cricosphaera carterae grown under calcium limitation. Strontium seemed to promote coccolith attachment to cells rather than to affect calcium uptake or coccolith formation itself.  相似文献   
8.
Clacium sorption by Cladophora glomerata (L.) Kutz grown in continuous-flow culture increased substantially as the alga aged (12.3–160 mg Calg dry wt). This reflected increased pectin layered in thickening cell walls followed by deposition of CaCO3 around cells. The high levels of pectin (up to 23% of dry wt) may account for the plant's reported high affinity for cations. The onset of carbonate deposition coincided with the appearance of carbonabic anhydrase activity in cells. This suggests that carbonate deposition mey be a funtion of bicarbonate use as a source of CO2 for photosynthesis. Calcium uptake appears to occur by active transport in that it exhibited saturation kinetics, occurred against a concentration gradient, depended on light, and was nearly abolished by treatments that allow diffusion. Although strontium competed for Ca for binding sites of pectin, it did not inhibit intermal transport of Ca. Consequently, the proposed carrier may be specific for Ca.  相似文献   
9.
It remains unclear whether the necessity of calcified mellitus induced by high inorganic phosphate (Pi) is required and the roles of autophagy plays in aldosterone (Aldo)‐enhanced vascular calcification (VC) and vascular smooth muscle cell (VSMC) osteogenic differentiation. In the present study, we found that Aldo enhanced VC both in vivo and in vitro only in the presence of high Pi, alongside with increased expression of VSMC osteogenic proteins (BMP2, Runx2 and OCN) and decreased expression of VSMC contractile proteins (α‐SMA, SM22α and smoothelin). However, these effects were blocked by mineralocorticoid receptor inhibitor, spironolactone. In addition, the stimulatory effects of Aldo on VSMC calcification were further accelerated by the autophagy inhibitor, 3‐MA, and were counteracted by the autophagy inducer, rapamycin. Moreover, inhibiting adenosine monophosphate‐activated protein kinase (AMPK) by Compound C attenuated Aldo/MR‐enhanced VC. These results suggested that Aldo facilitates high Pi‐induced VSMC osteogenic phenotypic switch and calcification through MR‐mediated signalling pathways that involve AMPK‐dependent autophagy, which provided new insights into Aldo excess‐associated VC in various settings.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号