首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2015年   1篇
  2012年   1篇
  2008年   1篇
  2005年   2篇
  2003年   1篇
  1999年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Busulfan (1,4-butanediol dimethanesulfonate) was used to deplete endogenous germ cells for the enhanced production of chicken germline chimeras. Utilizing immunohistochemical identification of primordial gem cells (PGCs) in Stage 27 chicken embryos, two delivery formulations were compared relative to the degree of endogenous PGC depletion, a busulfan suspension (BS) and a solublized busulfan emulsion (SBE). Both busulfan treatments resulted in a significant reduction in PGCs when compared to controls. However, the SBE resulted in a more consistent and extensive depletion of PGCs than that observed with the BS treatment. Repopulation of SBE-treated embryos with exogenous PGCs resulted in a threefold increase of PGCs in Stage 27 embryos. Subsequently, germline chimeras were produced by the transfer of male gonadal PGCs from Barred Plymouth Rock embryos into untreated and SBE-treated White Leghorn embryos. Progeny testing of the presumptive chimeras with adult Barred Plymouth Rock chickens was performed to evaluate the efficiency of germline chimera production. The frequency of germline chimerism in SBE-treated recipients increased fivefold when compared to untreated recipients. The number of donor-derived offspring from the germline chimeras also increased eightfold following SBE-treatment of the recipient embryos. These results demonstrated that the administration of a busulfan emulsion into the egg yolk of unincubated eggs improved the depletion of endogenous PGCs in the embryo and enhanced the efficiency of germline chimera production.  相似文献   
2.
High-dose busulfan is an important component in many conditioning protocols for hematopoietic stem cell transplantation (HSCT) or bone marrow transplantation (BMT) in both adults and children. During the past 12y several studies have reported the wide inter-invidual variability in busulfan disposition. Age, disease status, hepatic function, circadian rhythmicity, drug interactions and bioavailability, were identified as factors contributing to the high inter-individual variability found in busulfan disposition. Traditionally, a standard busulfan dose of 4mg/kg/d for four days is used in most BMT/HSCT protocols. Many investigations have pointed out the pharmacodynamic relationship between a high busulfan systemic exposure and the occurrence of BMT related toxicity including hepatic veno-occlusive disease (VOD), interstitial pneumonia and alopecia in adult patients. However, studies in young patients have shown a high rate of graft failure and subsequently relapse which most probably is due to the low systemic exposure despite the standard dose schedule. In children and infants VOD was not observed with the standard doses. Increasing interest for the drug and new modification strategies for children led to higher rate of VOD and CNS toxicity when busulfans was administered according to the body surface area. More pharmacodynamic studies are required to establish the relation between the systemic exposure to busulfan and the therapeutic efficacy, especially in young children undergoing BMT or HSCT. In the present time an accurate and effective busulfan plasma level monitoring combined with dose adjustment based on the known pharmacological parameters may improve the clinical outcome for patients undergoing BMT.  相似文献   
3.
Allogenic bone marrow transplantation (BMT), an important treatment for hematological malignancies, is often complicated by graft-versus-host disease (GVHD). Suppression of GVHD is associated with the unwanted diminishment of the graft-versus-leukemia (GVL) response. The aim of this study was to maintain the benefits of GVL during GVHD suppression through isolated blockade of T-cell migration factors. To this end, we developed a murine model of B-cell leukemia, which was treated with BMT to induce GVHD. Within this model, functional blockade of MIP-2/CXCR2 was analyzed by observing proteomic, histologic and clinical variables of GVHD manifestation. Luminex assay of collected tissue identified several cytokines [granulocyte colony-stimulating factor (G-CSF), keratinocyte-derived chemokine (KC), macrophage inflammatory protein-2 (MIP-2), and interleukin-23 (IL-23)] that were upregulated during GHVD, but reduced by neutralizing the MIP-2/CXCR2 axis. In addition, donor T-cell blockade of CXCR2 combined with recipient administration of anti-MIP-2 caused a significant decrease in GVHD while preserving the GVL response. We propose that blocking the MIP-2/CXCR2 axis represents a novel strategy to separate the toxicity of GVHD from the beneficial effects of GVL after allogenic BMT.  相似文献   
4.
李杨  王卫民 《生态科学》2008,27(5):368-375
白消安(1,4-二甲磺酸丁酯)是目前在治疗慢性嗜中性粒细胞白血病和骨髓移植中使用最广泛的一种摄生体,因为它在临床上的重要作用,其胚胎毒性长期以来一直是医生们关注的焦点。本研究的目的是评估白消安在斑马鱼胚胎和幼鱼早期发育过程中的毒理作用,包括胚胎毒性和致畸效应。研究首先确定了白消安对斑马鱼胚胎和幼鱼的半致死浓度(LD50),在白消安/DMSO溶液中孵育24h的胚胎其LD50值为43.42μg·mL-1, 幼鱼的LD50则为237.33μg·mL-1;其次对白消安处理导致的形态学缺陷也进行了研究,主要包括钩形尾、无尾、脊椎弯曲、脊索波浪状扭曲、单胸鳍、围心包水肿、卵黄囊吸收延迟以及短体长;第三,利用阿利辛蓝(Alcian Blue)染色研究了颌骨和脊椎骨的异常发育,白消安处理过的幼鱼的麦克尔氏软骨(Meckel's cartilage)间的距离显著短于未处理过的阴性对照组,而处理组的幼鱼在脊椎骨的分化程度上也明显低于对照组;另外,为了研究白消安对斑马鱼生殖系统的影响,使用生殖细胞特异性的nanos1 cRNA探针标定斑马鱼原始生殖细胞,研究处理前后原始生殖细胞的增殖和迁移状况,发现暴露在40μg·mL-1的白消安/DMSO溶液中12h,不仅能够抑制原始细胞的增殖而且明显干扰了这些细胞的定向迁移。这种对细胞的迁移作用之前从未见诸报道,其机制需要进一步地深入研究。  相似文献   
5.
Bone marrow transplantation (BMT) is often used to replace the bone marrow (BM) compartment of recipient mice with BM cells expressing a distinct biomarker isolated from donor mice. This technique allows for identification of donor-derived hematopoietic cells within the recipient mice, and can be used to isolate and characterize donor cells using various biochemical techniques. BMT typically relies on myeloablative conditioning with total body irradiation to generate niche space within the BM compartment of recipient mice for donor cell engraftment. The protocol we describe here uses myelosuppressive conditioning with the chemotherapeutic agent busulfan. Unlike irradiation, which requires the use of specialized facilities, busulfan conditioning is performed using intraperitoneal injections of 20 mg/kg busulfan until a total dose of 60-100 mg/kg has been administered. Moreover, myeloablative irradiation can have toxic side effects and requires successful engraftment of donor cells for survival of recipient mice. In contrast, busulfan conditioning using these doses is generally well tolerated and mice survive without donor cell support. Donor BM cells are isolated from the femurs and tibiae of mice ubiquitously expressing green fluorescent protein (GFP), and injected into the lateral tail vein of conditioned recipient mice. BM chimerism is estimated by quantifying the number of GFP+ cells within the peripheral blood following BMT. Levels of chimerism >80% are typically observed in the peripheral blood 3-4 weeks post-transplant and remain established for at least 1 year. As with irradiation, conditioning with busulfan and BMT allows for the accumulation of donor BM-derived cells within the central nervous system (CNS), particularly in mouse models of neurodegeneration. This busulfan-mediated CNS accumulation may be more physiological than total body irradiation, as the busulfan treatment is less toxic and CNS inflammation appears to be less extensive. We hypothesize that these cells can be genetically engineered to deliver therapeutics to the CNS.  相似文献   
6.
The expression pattern of Notch family receptors during mouse spermatogenesis was examined by immunohistochemistry. The entire cytoplasm of spermatogonia, spermatocytes and spermatids showed staining with antibodies against extracellular domains of Notch1, 2 and 4. In contrast, the nuclei of spermatogonia showed staining with an antibody against the intracellular domain of Notch3, and the nuclei of spermatocytes and spermatids showed staining with antibodies against the intracellular domains of Notch1 and 4. During regeneration of spermatogonia in busulfan-treated mice, the nuclei of all proliferating cells showed staining for the intracellular domain of Notch3. Western blot analysis showed that the molecular weights of the intracellular domains of Notch1 and 3 localizing in the nuclear fraction were smaller than those in the cytoplasmic fraction. This was consistent with the theory that the intracellular domain of Notch was cleaved in the cytoplasm and translocated to the nucleus. These results suggest that different Notch signals are sequentially activated during mouse spermatogenesis and control the proliferation and differentiation of spermatogenic stem cells.  相似文献   
7.
BACKGROUND: Little is known about the developmental changes associated with tibial ray deficiencies. The aim of this study was to detect cell death, proliferation, and gene expression that result in tibial ray deficiencies. METHODS: We induced tibial ray deficiencies in rat embryos using a teratogenic agent (busulfan) and observed the developmental changes in 1126 hindlimbs. We performed Nile blue staining, whole mount in situ hybridization for fibroblast growth factor 8 (Fgf8), bone morphogenetic protein 4 (Bmp4) and Sonic hedgehog (Shh), terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) and assessment of cell proliferation by 5-bromo-2'-deoxy-uridine (BrdU)/anti-BrdU immunohistochemistry. RESULTS: In situ hybridization showed reductions in Fgf8 and Bmp4 expression. Histological examination showed a delay of mesenchymal condensation, increased mesenchymal cell death, decreased mesenchymal cell proliferation, and a reduction in the number of mesenchymal cells. These abnormalities may cause hypoplasia of the limb. Bmp4 expression was markedly reduced in the anterior mesenchyme. Shh was expressed in the posterior mesenchyme. We suggest that the posterior skeletal elements may be fully formed owing to Shh expression, but the anterior skeletal elements may be underdeveloped owing to an intense reduction of Bmp4 expression in the anterior mesenchyme, causing hypoplasia of the tibial ray. CONCLUSIONS: The combined effects of increased cell death, decreased cell proliferation, reduction of Fgf8 expression, and intense reduction of Bmp4 expression in the anterior mesenchyme may play an important role in the development of tibial ray deficiency induced by busulfan.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号