首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   2篇
  国内免费   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   9篇
  2013年   2篇
  2011年   3篇
  2010年   4篇
  2009年   11篇
  2008年   5篇
  2007年   9篇
  2006年   10篇
  2005年   11篇
  2004年   5篇
  2003年   7篇
  2002年   10篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1996年   8篇
  1995年   3篇
  1994年   13篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   21篇
  1983年   14篇
  1982年   9篇
  1981年   13篇
  1980年   12篇
  1979年   9篇
  1978年   11篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
1.
The magnitudes of inter-chromophore interactions in bacterial photosynthetic reaction centers are investigated by measuring absorption and Stark spectra of reaction centers in which monomeric chromophores are modified and in a novel triplet mutant which lacks the special pair. The circular dichroism spectrum of the triple mutant reaction center was also measured. Only small changes in the spectroscopic properties are observed, as has also been found for several types of reaction centers in which the absorption or chemical properties of a chromophore are altered by site-specific mutations. We conclude that the electronic absorption, circular dichroism and Stark features of the special pair and the monomeric chromophores in the reaction center are relatively insensitive to inter-chromophore interactions.  相似文献   
2.
The transfer of excitation energy in intact cells of the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus was studied both at low temperature and under more physiological conditions. Analysis of excitation spectra measured at 4K indicates that the minor fraction of bacteriochlorophyll a present in the chlorosome functions as an intermediate in energy transfer between the main light-harvesting pigment BChl c and the membrane-bound B808-866 antenna complex. This supports the hypothesis that BChl a is associated with the base plate which connects the chlorosome with the membrane. The overall efficiency for energy transfer from the chlorosome to the membrane is only 15% at 4K. High efficiencies of close to 100% are observed above 40°C near the temperature where the cultures are grown. Cooling to 20°C resulted in a sudden drop of the transfer efficiency which appeared to originate in the chlorosome. This decrease may be related to a lipid phase transition. Further cooling mainly affected the efficiency of transfer between the chlorosome and the membrane. This effect can only partially be explained by a decreased Förster overlap between the chlorosomal BChl a and BChl a 808 associated with the membrane-bound antenna system. The temperature dependence of the fluorescence yield of BChl a 866 also appeared to be affected by lipid phase transitions, suggesting that this fluorescence can be used as a native probe of the physical state of the membrane.  相似文献   
3.
Spectrally pure reaction center preparations from Chloroflexus aurantiacus have been obtained in a stable form; however, the product contained several contaminating polypeptides. The reaction center pigment molecules (probably three bacteriochlorophyll a and three bacteriopheophytin a molecules) are associated with two polypeptides (Mr = 30000 and 28000) in a reaction center complex of Mr = 52000. No carotenoid is present in the complex. These data together with previous spectral data suggest that the Chloroflexus reaction center represents a more primitive evolutionary form of the purple bacterial reaction center, and that it has little if any relationship to the green bacterial component. A reaction center preparation from Rhodopseudomonas sphaeroides R26 was fully denatured at 50°C while the Chloroflexus reaction center required higher temperatures (70–75°C) for complete denaturation. Thus, an intrinsic membrane protein of a photosynthetic thermophile has been demonstrated to have greater thermal stability than the equivalent component of a mesophile.  相似文献   
4.
Chemical modification of Rhodospirillum rubrum chromatophores by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) results in inactivation of photophosphorylation, Mg2+-ATPase, oxidative phosphorylation and ATP-driven transhydrogenase, with apparent first-order kinetics. Other energy-linked reactions such as light-driven transhydrogenase and light-dependent proton uptake were insensitive to NBD-Cl. The Ca2+-ATPase activity of the soluble coupling factor from chromatophores (R. rubrum F1) was inactivated by NBD-Cl with kinetics resembling those described for Mg2+-ATPase and photophosphorylation activities of chromatophores. Both NBD-chromatophores and NBD-R. rubrum F1 fully recovered their activities when subjected to thiolysis by dithioerythritol. Phosphoryl transfer reactions of chromatophores and Ca2+-ATPase activity of R. rubrum F1 were fully protected by 5 mM Pi against modification by NBD-Cl. ADP or ATP afforded partial protection. Analysis of the protection of Ca2+-ATPase activity by Pi indicated that NBD-Cl and Pi are mutually exclusive ligands. Spectroscopic studies revealed that tyrosine and sulfhydryl residues in R. rubrum F1 underwent modification by NBD-Cl. However, the inactivation was only related to the modification of tyrosine groups.  相似文献   
5.
Fluorescence lifetimes have been measured for bacteriochlorophyll (BChl) c isolated from Chlorobium limicola in different states of aggregation in non-polar solvents. Two different homologs of BChl c were used, one with an isobutyl group at the 4 position, the other with n-propyl. Species previously identified as dimers (Olson and Pedersen 1990, Photosynth Res, this issue) decayed with lifetimes of 0.64 ns for the isobutyl homolog, 0.71 ns for n-propyl. Decay-associated spectra indicate that the absorption spectrum of the isobutyl dimer is slightly red-shifted from that of the n-propyl dimer. Aggregates absorbing maximally at 710 nm fluoresced with a principal lifetime of 3.1 ns, independent of the homolog used. In CCl4, only the isobutyl homolog forms a 747-nm absorbing oligomer spectrally similar to BChl c in vivo. This oligomer shows non-exponential fluorescence decay with lifetimes of 67 and 19 ps. Because the two components show different excitation spectra, the higher oligomer is probably a mixture of more than one species, both of which absorb at 747 nm.Abbreviations BChl bacteriochlorophyll - Chl chlorophyll - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaW% baaSqabeaacaaIYaaaaaaa!3777!\[\chi ^2 \] chi-square - FWHM full-width at half-maximum  相似文献   
6.
Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.Abbreviations BChl bacteriochlorophyll - Chl chlorophyll - Rb Rhodobacter - Rp Rhodopseudomonas  相似文献   
7.
Pigment analysis was performed by means of normal phase HPLC on a number of bacteriochlorophyll a and b containing species of purple bacteria that contain a core antenna only. At least 99% of the bacteriochlorophyll in Rhodobacter sphaeroides R26, Rhodopseudomonas viridis and Thiocapsa pfennigii was esterified with phytol (BChl a p and BChl b p, respectively). Rhodospirillum rubrum contained only BChl a esterified with geranyl-geraniol (BChl a GG). Rhodospirillum sodomense and Rhodopseudomonas marina contained, in addition to BChl a p, small amounts of BChl a GG, and presumably also of BChl a esterified with dihydro and tetrahydro geranyl-geraniol (2,10,14-phytatrienol and probably 2,14-phytadienol). In all species bacteriopheophytin (BPhe) esterified with phytol was present. The BChl/BPhe ratio indicated that in these species a constant number of 25 ± 3 antenna BChls is present per reaction centre. This number supports a model in which the core antenna consists of 12 - heterodimers surrounding the reaction centre. Determination of the in vivo extinction coefficient of BChl in the core-reaction centre complex yielded a value of ca. 140 mM–1 cm–1 for BChl a containing species and of 130 mM–1 cm–1 for Rhodopseudomonas viridis.Abbreviations BChl bacteriochlorophyll - BPhe bacteriopheophytin - GG geranyl-geraniol - LHI and LHII core and peripheral antenna complexes - P phytol - RC reaction centre Dedicated to the memory of Professor D.I. Arnon.  相似文献   
8.
A reaction-center pigment-protein complex of the green bacterium Prosthecochloris aestuarii was studied by means of nanosecond-flash spectroscopy. In this complex electron transfer between the primary and secondary acceptor is blocked. The spectra and kinetics of the absorption changes induced by a short flash indicated the formation of the radical pair P-840+I?, which decayed in 20–35 ns, mainly to the triplet state of the primary electron donor P-840. The absorption difference spectrum of the initial absorption change indicated that the primary acceptor I is either bacteriopheophytin c or another pigment with absorption maximum at 665 nm.  相似文献   
9.
M. Lutz  J. Kleo 《BBA》1979,546(2):365-369
Resonance Raman spectra of the π-cation of bacterio-chlorophyll a in solution at 30 K are reported and discussed. Outer C
C bonds of the pyrroles and the methine bridges are weakened by the ionization, while C
N and Mg-N bonds remain essentially unaffected. Resonance Raman spectra of reaction centers suggest that the positive charge on P-870+ should be localized on a single bacteriochlorophyll molecule by the lifetime of the scattering process (≈ 10?13 s).  相似文献   
10.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号