首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2021年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
  1996年   2篇
  1990年   1篇
排序方式: 共有21条查询结果,搜索用时 343 毫秒
1.
Apomicts that produce unreduced parthenogenetic eggs are generally polyploid and occur in at least 33 of 460 families of angiosperms. Embryo sacs of these apomicts form precociously from ameiotic megaspore mother cells (diplospory) or adjacent somatic cells (apospory). Polysporic species (bisporic and tetrasporic) are sexual and occur in at least 88 families. Their embryo sacs also form precociously, but only non-critical portions of meiosis are affected. It is hypothesized that (i) the partial to complete replacement of meiosis by embryo sac formation in apomictic and polysporic species results from asynchronously-expressed duplicate genes that control female development, (ii) duplicate genes result from polyploidy or paleopolyploidy (diploidized polyploidy with chromatin from multiple genomes), (iii) apomixis results from competition between nearly complete sets of asynchronously-expressed duplicate genes, and (iv) polyspory and polyembryony result from competition between incomplete sets of asynchronously-expressed duplicate genes. Phylogenetic and genomic studies were conducted to evaluate this hypothesis. Apomictic, polysporic, and polyembryonic species tended to occur together in cosmopolitan families in which temporal variation in female development is expected, apomicts were generally polyploid with few chromosomes per genome (X = 9.6pL0.4 SE), and polysporic and polyembryonic species were paleopolyploid with many chromosomes per genome (x= 15.7pL0.6 and 13.2pL0.4, respectively). These findings support the proposed duplicate-gene asynchrony hypothesis and further suggest asexual reproduction in apomicts preserves primary genomes, sexual reproduction in polysporic and polyembryonic polyploids accelerates paleopolyploidization, and pa-leopolyploidization may sometimes eliminate gene duplications required for apomixis while retaining duplications required for polyspory or polyembryony. Hence, apomixis, with its long-term reproductive stability, may occasionally serve as an evolutionary springboard in the evolution of normal and developmentally-novel paleopolyploid sexual species and genera.  相似文献   
2.
Apomixis in crucifer (Brassicaceae) species is rare, reported in just four genera (Boechera, Draba, Erysimum, and Parrya), and one intergeneric hybrid (Raphanobrassica). It is well studied only in Boechera, where it is widespread among 100+ recognized species. However, its occurrence in related genera of the tribe Boechereae has not been documented previously. Here we analyzed genome evolution, mode of reproduction, and fertility of the monospecific Boechereae genus Phoenicaulis (P. cheiranthoides), endemic to the northwestern United States. We discovered that the species encompasses diploid (2n = 2x = 14), triploid (2n = 3x = 21), and tetraploid (2n = 4x = 28) populations. Comparative chromosome painting analyses revealed that the three karyotypes are essentially structurally identical, differing only in the presence of a largely heterochromatic chromosome (Het) in the triploid and tetraploid cytotypes. The genome structure of Phoenicaulis appeared identical to that of Boechera species previously analyzed, suggesting genomic stasis despite the morphological and molecular divergence of the two genera. This genome colinearity extended to the presence and structure of the Het chromosomes, which are closely associated with apomictic reproduction in Boechera. Interestingly, all three cytotypes of Phoenicaulis proved to be apomictic, regardless of the presence or absence of a Het chromosome, and sexual populations have yet to be identified.  相似文献   
3.
Characteristically, land plants exhibit a life cycle with an ‘alternation of generations’ and thus alternate between a haploid gametophyte and a diploid sporophyte. At meiosis and fertilisation the transitions between these two ontogenies take place in distinct single stem cells. The evolutionary invention of an embryo, and thus an upright multicellular sporophyte, in the ancestor of land plants formed the basis for the evolution of increasingly complex plant morphologies shaping Earth's ecosystems. Recent research employing the moss Physcomitrella patens revealed the homeotic gene BELL1 as a master regulator of the gametophyte‐to‐sporophyte transition. Here, we discuss these findings in the context of classical botanical observations.  相似文献   
4.
5.
Hybrids lose heterotic yield advantage when multiplied sexually via meiosis. A potential alternative breeding system for hybrids is apospory, where female gametes develop without meiosis. Common among grasses, apospory begins in the nucellus, where aposporous initials (AIs) appear near the sexual megaspore mother cell (MeMC). The cellular origin of AIs is obscure, but one possibility, suggested by the mac1 and msp1 mutants of maize and rice, is that AIs are apomeiotic derivatives of the additional MeMCs that appear when genetic control over sporocyte numbers is relaxed. MULTIPLE SPOROCYTES1 (MSP1) encodes a leucine-rich-repeat receptor kinase, which is orthologous to EXS/EMS1 in Arabidopsis. Like mac1 and msp1, exs/ems1 mutants produce extra sporocytes in the anther instead of a tapetum, causing male sterility. This phenotype is copied in mutants of TAPETUM DETERMINANT1 (TPD1), which encodes a small protein hypothesized to be an extracellular ligand of EXS/EMS1. Here we show that rice contains two TPD1-like genes, OsTDL1A and OsTDL1B. Both are co-expressed with MSP1 in anthers during meiosis, but only OsTDL1A and MSP1 are co-expressed in the ovule. OsTDL1A binds to the leucine-rich-repeat domain of MSP1 in yeast two-hybrid assays and bimolecular fluorescence complementation in onion cells; OsTDL1B lacks this capacity. When driven by the maize Ubiquitin1 promoter, RNA interference against OsTDL1A phenocopies msp1 in the ovule but not in the anther. Thus, RNAi produces multiple MeMCs without causing male sterility. We conclude that OsTDL1A binds MSP1 in order to limit sporocyte numbers. OsTDL1A-RNAi lines may be suitable starting points for achieving synthetic apospory in rice.  相似文献   
6.
7.
Asexual reproduction through seeds, or apomixis, is widespread in angiosperms, although does not happen frequently. It occurs in no major crop plant, but its deployment in major crops would afford advantages for breeding and maintenance of hybrid genotypes. Deployment is still a long-term goal, however, since the genetic mechanisms underlying apomixis in nature have not been determined nor has the isolation of apomictic mutants in sexual plants been achieved. Nevertheless, an increasing intensity of research toward these goals over the last decade has greatly expanded our knowledge of genome structure and gene expression in naturally occurring apomicts and female gametophyte development in sexual plants. A common working hypothesis is that apomixis is a “deregulation” of sexual processes and is increasingly supported by gene expression data. Nevertheless, the search for a unique trigger that initiates apomictic development still cannot be disqualified. Further characterization of female gametophyte-related genes and genomes of apomicts and model sexual plants will be fruitful for identifying overlaps in developmental networks.

  相似文献   

8.
采用石蜡切片技术对龙须草(Eulaliopsis binata(Rotz)C.E.Hubb)进行了系统的胚胎学研究,证明龙须草为禾本科植物中一种新的无融合生殖材料.龙须草无融合生殖方式为无孢子生殖,在胚珠发育早期,多个珠心细胞特化为无孢子生殖原始细胞,由原始细胞发育为单核胚囊,经两次有丝分裂形成4核胚囊,进一步分化形成两种类型的成熟胚囊:(1)具1个卵细胞,1个助细胞和2个极核,占观察总数的67.6%;(2)具1个卵细胞,2个助细胞和1个极核,占观察总数的32.4%.胚囊发育属大黍型.多个无孢子生殖原始细胞可以同时发育,最后形成2个或多个胚囊,其比例为17.7%.胚珠内没有有性胚囊的发育.胚的发生有两种类型:(1)早发生胚(74%),开花前1~2 d,极核未分裂前卵细胞分裂形成胚;(2)迟发生胚(26%),开花后2~3 d,极核分裂形成多个胚乳游离核后,卵细胞启动分裂形成胚.存在多胚现象,多胚来自不同胚囊内卵细胞的孤雌生殖,多胚发生率为13%.胚乳由极核不经受精自发分裂产生.  相似文献   
9.
Asexual seed formation, or apomixis, in the Hieracium subgenus Pilosella is controlled by two dominant independent genetic loci, LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP). We examined apomixis mutants that had lost function in one or both loci to establish their developmental roles during seed formation. In apomicts, sexual reproduction is initiated first. Somatic aposporous initial (AI) cells differentiate near meiotic cells, and the sexual pathway is terminated as AI cells undergo mitotic embryo sac formation. Seed initiation is fertilization-independent. Using a partially penetrant cytotoxic reporter to inhibit meioisis, we showed that developmental events leading to the completion of meiotic tetrad formation are required for AI cell formation. Sexual initiation may therefore stimulate activity of the LOA locus, which was found to be required for AI cell formation and subsequent suppression of the sexual pathway. AI cells undergo nuclear division to form embryo sacs, in which LOP functions gametophytically to stimulate fertilization-independent embryo and endosperm formation. Loss of function in either locus results in partial reversion to sexual reproduction, and loss of function in both loci results in total reversion to sexual reproduction. Therefore, in these apomicts, sexual reproduction is the default reproductive mode upon which apomixis is superimposed. These loci are unlikely to encode genes essential for sexual reproduction, but may function to recruit the sexual machinery at specific time points to enable apomixis.  相似文献   
10.
濒危植物焕镛木的兼性无融合生殖   总被引:1,自引:0,他引:1  
2001—2002年连续两年在广西环江木论和广西罗城大黄泥的2个焕镛木(Woonyoungia septentrionalis (Dandy) Law)自然种群中,对单性异株的濒危植物焕镛木进行繁育系统测定,对即将开花的雌花花蕾分别进行套袋、套网、人工授粉处理,并用自然授粉雌花作对照,其座果率和结实率统计结果表明:自然授粉、人工授粉、套袋和套网处理的花均能结实,但它们的座果率和结实率存在较大的差异。在两个种群中,人工授粉和自然授粉的总结实率(PERS)均比套袋和套网处理的高,其中人工授粉的最高,套网处理的最低。由此可见,焕镛木既能通过有性生殖方式结实,又能通过无融合生殖方式结实,而且这两种生殖方式获得的种子均能萌发成幼苗,由此断定,焕镛木的繁育系统为兼性无融合生殖。这是首次报道木兰科植物存在无融合生殖现象。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号