首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2016年   1篇
  2009年   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The primitive streak establishes the antero‐posterior body axis in all amniote species. It is thought to be the conduit through which mesoderm and endoderm progenitors ingress and migrate to their ultimate destinations. Despite its importance, the streak remains poorly defined and one of the most enigmatic structures of the animal kingdom. In particular, the posterior end of the primitive streak has not been satisfactorily identified in any species. Unexpectedly, and contrary to prevailing notions, recent evidence suggests that the murine posterior primitive streak extends beyond the embryo proper. In its extraembryonic site, the streak creates a node‐like cell reservoir from which the allantois, a universal caudal appendage of all amniotes and the future umbilical cord of placental mammals, emerges. This new insight into the fetal/umbilical relationship may explain the etiology of a large number of umbilical‐associated birth defects, many of which are correlated with abnormalities of the embryonic midline.  相似文献   
2.
The omphalallantoic placenta is a complex organ that is unique to viviparous squamates. Using transmission EM and light microscopy, we examined this placenta in garter snakes in order to understand its structural organization and functional capabilities. The omphalallantoic placenta is formed from the uterine lining and the bilaminar omphalopleure, the latter of which is associated with the isolated yolk mass and allantois. A thin shell membrane separates the fetal and maternal tissues throughout gestation. The uterine epithelium contains cuboidal cells with large droplets or granules and appears to be secretory. Epithelium of the omphalopleure is specialized for absorption and contains cells with prominent microvilli and others with large cytoplasmic droplets or granules. The brush-border cells are rich in mitochondria and Golgi bodies and interdigitate extensively with adjacent cells, forming elaborate intercellular canaliculi. Their morphology is consistent with their proposed role in sodium-coupled water movement. During development, the isolated yolk mass becomes depleted as yolk droplets are digested by cells of the omphalopleure and allantois. However, the allantois does not fuse to or vascularize the inner face of the omphalopleure. Consequently, the distance between fetal and maternal circulatory systems remains large (about 250-300 microm), precluding efficient gas exchange and hemotrophic transfer. The morphology of the omphalallantoic placenta strongly suggests that it functions in nutrient transfer through uterine secretion and fetal absorption.  相似文献   
3.
During mouse gastrulation, the primitive streak is formed on the posterior side of the embryo. Cells migrate out of the primitive streak to form the future mesoderm and endoderm. Fate mapping studies revealed a group of cell migrate through the proximal end of the primitive streak and give rise to the extraembryonic mesoderm tissues such as the yolk sac blood islands and allantois. However, it is not clear whether the formation of a morphological primitive streak is required for the development of these extraembryonic mesodermal tissues. Loss of the Cripto gene in mice dramatically reduces, but does not completely abolish, Nodal activity leading to the absence of a morphological primitive streak. However, embryonic erythrocytes are still formed and assembled into the blood islands. In addition, Cripto mutant embryos form allantoic buds. However, Drap1 mutant embryos have excessive Nodal activity in the epiblast cells before gastrulation and form an expanded primitive streak, but no yolk sac blood islands or allantoic bud formation. Lefty2 embryos also have elevated levels of Nodal activity in the primitive streak during gastrulation, and undergo normal blood island and allantois formation. We therefore speculate that low level of Nodal activity disrupts the formation of morphological primitive streak on the posterior side, but still allows the formation of primitive streak cells on the proximal side, which give rise to the extraembryonic mesodermal tissues formation. Excessive Nodal activity in the epiblast at pre‐gastrulation stage, but not in the primitive streak cells during gastrulation, disrupts extraembryonic mesoderm development.  相似文献   
4.
The fertilized egg of the mammal gives rise to the embryo and its extraembryonic structures, all of which develop in intimate relation with each other. Yet, whilst the past several decades have witnessed a vast number of studies on the embryonic component of the conceptus, study of the extraembryonic tissues and their relation to the fetus have been largely ignored. The allantois, precursor tissue of the mature umbilical cord, is a universal feature of all placental mammals that establishes the vital vascular bridge between the fetus and its mother. The allantois differentiates into the umbilical blood vessels, which become secured onto the chorionic component of the placenta at one end and onto the fetus at the other. In this way, fetal blood is channeled through the umbilical cord for exchange with the mother. Despite the importance of this vascular bridge, little is known about how it is made. The aim of this review is to address current understanding of the biology of the allantois in the mouse and genetic control of its features and functions, and to highlight new paradigms concerning the developmental relationship between the fetus and its umbilical cord.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号