首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   26篇
  国内免费   6篇
  2024年   2篇
  2023年   6篇
  2022年   6篇
  2021年   15篇
  2020年   21篇
  2019年   16篇
  2018年   16篇
  2017年   9篇
  2016年   10篇
  2015年   15篇
  2014年   21篇
  2013年   20篇
  2012年   19篇
  2011年   12篇
  2010年   10篇
  2009年   6篇
  2008年   9篇
  2007年   18篇
  2006年   3篇
  2005年   3篇
  2004年   6篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1994年   1篇
  1992年   2篇
排序方式: 共有253条查询结果,搜索用时 328 毫秒
1.
2.
3.
PU.1是ETS转录因子家族(E26 transformation-specific family)的成员,在机体多种组织发育中发挥重要作用。近年来的研究发现,PU.1不仅在造血谱系的确定和分化中起作用,而且还在机体免疫、脂肪形成、组织纤维化、神经发育中发挥功能。在造血及免疫等系统中,PU.1与多个靶基因形成复杂的调节网络,并且PU.1受组蛋白修饰和非编码RNA等表观遗传的调控,参与细胞增殖、分化等多个过程,对维持细胞稳态具有一定意义。PU.1与红细胞白血病、前B细胞急性淋巴细胞白血病、急性髓细胞白血病、过敏性疾病、类风湿性关节炎、肥胖相关疾病、骨硬病、神经胶质瘤等疾病的发生相关。该文从功能方面阐述PU.1的最新研究进展,为该基因和ETS家族的后续研究提供新思路。  相似文献   
4.
5.
Comment on: Tran KV, et al. Cell Metab 2012; 15:222-9.  相似文献   
6.
Atherosclerosis is a kind of chronic cardiovascular disease, characterized by oxidized low-density lipoprotein (ox-LDL) accumulation in macrophage. Tanshinone IIA (Tan), a lipophilic pharmacologically activate compound from Salvia miltiorrhiza Bunge, has been indicated to exert cardioprotective roles. Nevertheless, the biological role of Tan and regulatory mechanism in atherosclerosis are not fully established. In present study, atherosclerosis model was established in THP-1-derived macrophages by treatment of ox-LDL. The adipogenesis was measured by Nile red staining. The expressions of inflammatory factors, microRNA-130b (miR-130b) and WNT5A were measured by quantitative real-time polymerase chain reaction or Western blot. The target association between miR-130b and WNT5A was explored via luciferase activity and RNA immunoprecipitation assay. The results showed that exposure of Tan inhibited ox-LDL-induced adipogenesis and expressions of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha in THP-1-derived macrophages. miR-130b expression was decreased in THP-1-derived macrophages treated by ox-LDL and its overexpression attenuated adipogenesis as well as inflammatory response. miR-130b knockdown reversed the regulatory effect of Tan on adipogenesis and inflammatory response in THP-1-derived macrophages stimulated by ox-LDL. In addition, WNT5A acted as a functional target of miR-130b and inhibited by Tan and miR-130b. As a conclusion, Tan decreased the adipogenesis and inflammatory response by mediating miR-130b and WNT5A, providing a novel theoretical foundation for treatment of atherosclerosis.  相似文献   
7.
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a product of the cytochrome P450 (CYP)-catalyzed ω-hydroxylation of arachidonic acid, induces oxidative stress and, in clinical studies, is associated with increased body mass index (BMI) and the metabolic syndrome. This study was designed to examine the effects of exogenous 20-HETE on mesenchymal stem cell (MSC)-derived adipocytes. The expression levels of CYP4A11 and CYP4F2 (major 20-HETE synthases in humans) in MSCs decreased during adipocyte differentiation; however, exogenous administration of 20-HETE (0.1–1 μM) increased adipogenesis in a dose-dependent manner in these cells (P < 0.05). The inability of a 20-HETE analog to reproduce these effects suggested the involvement of a metabolic product of 20-HETE in mediating its pro-adipogenic effects. A cyclooxygenase (COX)-1 selective inhibitor enhanced, whereas a COX-2 selective or a dual COX-1/2 inhibitor attenuated adipogenesis induced by 20-HETE. The COX-derived metabolite of 20-HETE, 20-OH-PGE2, enhanced adipogenesis and lipid accumulation in MSCs. The pro-adipogenic effects of 20-HETE and 20-OH-PGE2 resulted in the increased expression of the adipogenic regulators PPARγ and β-catenin in MSC-derived adipocytes. Taken together we show for the first time that 20-HETE-derived COX-2-dependent 20-OH-PGE2 enhances mature inflamed adipocyte hypertrophy in MSC undergoing adipogenic differentiation.  相似文献   
8.
9.
The aim of present study is to evaluate the effects of Garcinia cambogia on the mRNA levels of the various genes involved in adipogenesis, as well as on body weight gain, visceral fat accumulation, and other biochemical markers of obesity in obesity-prone C57BL/6J mice. Consumption of the Garcinia cambogia extract effectively lowered the body weight gain, visceral fat accumulation, blood and hepatic lipid concentrations, and plasma insulin and leptin levels in a high-fat diet (HFD)-induced obesity mouse model. The Garcinia cambogia extract reversed the HFD-induced changes in the expression pattern of such epididymal adipose tissue genes as adipocyte protein aP2 (aP2), sterol regulatory element-binding factor 1c (SREBP1c), peroxisome proliferator-activated receptor γ2 (PPARγ2), and CCAT/enhancer-binding protein α (C/EBPα). These findings suggest that the Garcinia cambogia extract ameliorated HFD-induced obesity, probably by modulating multiple genes associated with adipogenesis, such as aP2, SREBP1c, PPARγ2, and C/EBPα in the visceral fat tissue of mice.  相似文献   
10.
Obesity and related metabolic disorders constitute one of the most pressing heath concerns worldwide. Increased adiposity is linked to autophagy upregulation in adipose tissues. However, it is unknown how autophagy is upregulated and contributes to aberrant adiposity. Here we show a FoxO1-autophagy-FSP27 axis that regulates adipogenesis and lipid droplet (LD) growth in adipocytes. Adipocyte differentiation was associated with upregulation of autophagy and fat specific protein 27 (FSP27), a key regulator of adipocyte maturation and expansion by promoting LD formation and growth. However, FoxO1 specific inhibitor AS1842856 potently suppressed autophagy, FSP27 expression, and adipocyte differentiation. In terminally differentiated adipocytes, AS1842856 significantly reduced FSP27 level and LD size, which was recapitulated by autophagy inhibitors (bafilomycin-A1 and leupeptin, BL). Similarly, AS1842856 and BL dampened autophagy activity and FSP27 expression in explant cultures of white adipose tissue. To our knowledge, this is the first study addressing FoxO1 in the regulation of adipose autophagy, shedding light on the mechanism of increased autophagy and adiposity in obese individuals. Given that adipogenesis and adipocyte expansion contribute to aberrant adiposity, targeting the FoxO1-autophagy-FSP27 axis may lead to new anti-obesity options.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号