首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   0篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2014年   1篇
  2011年   3篇
  2010年   7篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   7篇
  1993年   1篇
  1992年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有84条查询结果,搜索用时 453 毫秒
1.
The molybdenum and tungsten dinitrogen-organonitrile complexes trans-[M(N2)(NCR)(dppe)2] (2, M=Mo; 4, M=W; R=Ph, C6H4Me-p, C6H4OMe-p, Me; dppe=Ph2PCH2CH2PPh2) underwent double protonation at the nitrile carbon atom with loss of N2 and a change in oxidation state to +4 on treatment with hydrochloric acid to afford the cationic imido complexes trans-[MCl(NCH2R)(dppe)2]+. The solid-state structure of trans-[WCl(NCH2CH3)(dppe)2][PF6]·CH2Cl2 was determined by single-crystal X-ray analysis. Protonation of complexes 2 by fluoroboric acid or hydrobromic acid also formed the similar imido complexes trans-[MoX(NCH2R)(dppe)2]+ (X=F, Br). In contrast, the dinitrogen complex trans-[Mo(N2)2(dppe)2] reacted with two equiv. of benzoylacetonitrile, a nitrile with acidic CH hydrogen atoms, to give the nitrido complex trans-[Mo(N)(NKCCHCOPh)(dppe)2] (12), which was accompanied by evolution of dinitrogen and the formation of 1-phenyl-2-propen-1-one in high yields. For complex 12, the zwitterionic structure, where the anionic enolate ligand PhC(O+)=CHCN coordinates to the cationic Mo(IV) center through its nitrogen atom, was confirmed by spectroscopic measurements and single-crystal X-ray analysis. A unique intermolecular aromatic C---HO hydrogen bonding was observed in that crystal structure. Complex 12 is considered to be formed via the cleavage of the CN triple bond of benzoylacetonitrile on the metal. A reaction mechanism is proposed, which includes the double protonation of the nitrile carbon atom of the ligating benzoylacetonitrile on a low-valent molybdenum center.  相似文献   
2.
PurposeThe main objective of this study was to evaluate the efficacy of tungsten carbide as new lead-free radiation shielding material in nuclear medicine by evaluating the attenuation properties.Materials and methodsThe elemental composition of tungsten carbide was analysed using Field-Emission Scanning Electron Microscopy (FESEM) with energy dispersive X-ray (EDX). The purity of tungsten carbide was 99.9%, APS: 40–50 µm. Three discs of tungsten carbide was fabricated with thickness of 0.1 cm, 0.5 cm and 1.0 cm. Three lead discs with similar thickness were used to compare the attenuation properties with tungsten carbide discs. Energy calibration of gamma spectroscopy was performed by using 123I, 133Ba, 152Eu, and 137Cs. Gamma radiation from these sources were irradiated on both materials at energies ranging from 0.160 MeV to 0.779 MeV. The experimental attenuation coefficients of lead and tungsten carbide were compared with theoretical attenuation coefficients of both materials from NIST database. The half value layer and mean free path of both materials were also evaluated in this study.ResultsThis study found that the peaks obtained from gamma spectroscopy have linear relationship with all energies used in this study. The relative differences between the measured and theoretical mass attenuation coefficients are within 0.19–5.11% for both materials. Tungsten carbide has low half value layer and mean free path compared to lead for all thickness at different energies.ConclusionThis study shows that tungsten carbide has high potential to replace lead as new lead-free radiation shielding material in nuclear medicine.  相似文献   
3.
Anaerobic, Gram-positive cocci were obtained from chicken feces by direct isolation, which grew on the purines uric acid, xanthine, 6,8-dihydroxypurine, guanine, and hypoxanthine. Adenine and glycine were fermented, but not as readily. Acetate, formate, ammonia, and CO2 were products. The isolated strains were nutritionally non-fastidious, however, they required selenite, molybdate, and tungstate as micronutrients. The cells were spherical and 0.5–0.9 m in diameter. The addition of bile salts enhanced the growth rate in most cases. The organisms proved to be quite resistant to lysis. The guanosine-plus-cytosine (G+C) content of their deoxyribonucleic acid was 33.6 to 34.8 mol%. The peptidoglycan was of the same structure (Gly-Lys-d-Asp) as reported for the anaerobic cocci of Hare group IX. However, the latter strains could only utilize glycine, not purines. Therefore, it is proposed to form a new species, Peptostreptococcus barnesae sp. nov.This paper is dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 60th birthday  相似文献   
4.
The allylidene complex (CO)5W=CH---C(Ph)=C(Ph)H (4) reacts with cyclopentadiene by stereospecific transfer of the carbene ligand to one of the two double bonds of cyclopentadiene to give a cis-divinylcyclopropane complex 5. The divinylcyclopropane ligand coordinates to the metal via the unsubstituted double bond. Addition of bromide to solutions of 5 gives rise to the formation of [(CO)5WBr] and a bicyclo[3.2.1]octadiene (6), the Cope rearrangement product of the free divinylcyclopropane. Thermolysis of 5 affords 6 and its (CO)5W complex. The reaction of 4 with furan (8a), 2-methylfuran (8b) and 3-methylfuran (8c) affords the (CO)5W(bicyclo[3.2.1]oxahepta- diene) complexes (9a–c), The formation of 9a–c which is chemo-, regio- and stereospecific is explained by a tandem cyclopropanation/Cope rearrangement sequence. The bicyclic ligands 10a–c are liberated from the metal either by thermolysis of solutions of 9a–c or by addition of bromide.  相似文献   
5.
Reaction of the allylidene tungsten complex [W(CPhCHCHMe)Br2(CO)2(4-picoline)] (1) with the dithiocarbamates MS2CNR2 (a: M=Na, R=Et; b: M=Na, R=Me; c: M=Li, R=Ph) in THF at 50 °C affords the vinylketene tungsten complexes [W(S2CNR2)2(OCCPhCHCHMe)(CO)] (2a–c). At lower temperatures, four reaction intermediates (3–6) may be discerned. Spectroscopic studies indicate that these compounds contain η4-allyldithiocarbamate ligands which are generated by addition of dithiocarbamate across the metal-carbon double bond of the allylidene-tungsten unit in 1. The structures of [W(S2CNEt2)2(OCCPhCHCHMe)(CO)] (2a) and of one intermediate, [W(η4-Et2NCS2CPhCHCHMe)(S2CNEt2)(CO)2] (5a) were elucidated by X-ray crystallography.  相似文献   
6.
The quadruple metal-metal bonded complexes, W2Cl4(PR3)4 (PR3 = PMe3, PMe2Ph, PBu3), photoreact in dichloromethane with near-UV excitation (λ>375 nm) to yield a mixed valence W2(II,III) photoproduct. Electronic absorption and EPR spectra of photolyzed solutions are identical to those obtained from the thermal oxidation of W2Cl4(PR3)4 by PhICI2, which is known to yield W2Cl5(PR3)3. Subsequent reaction of the photolyzed solution yields the oxidized, confacial biotahedral W2(III,III) halophosphine. Analysis of the organic photoproduct reveals that the halocarbon solvent is reduced by one electron to yield the chloromethyl radical. When the radical is produced in low yields, hydrogen abstraction from solvent appears to be sufficiently efficient to compete with dimerization and only chloromethane is observed; however, at higher concentrations, the chloromethyl radicals couple to produce dichloroethane. Photoreaction is observed only with near-UV excitation of the LMCT absorption manifold of W2Cl4(PR3)4. At lower energy wavelengths, transient absorption spectroscopy shows the production of the 1δδ* excited state, which decays to ground state over times commensurate with the decay of 1δδ* luminescence. In hydrocarbon solutions, no transient intermediate or photochemistry is observed, indicating that the LMCT excited state, although capable of reducing a C---X bond, cannot activate the stronger C---H bonds of hydrocarbons. The photochemistry and transient absorption spectroscopy results of the W2Cl4(PR3)4 complexes are compared to our previous studies of the homologs.  相似文献   
7.
Molybdenum is required for induction of nitrate reductase and of NAD-linked formate dehydrogenase activities in suspensions of wild type Paracoccus denitrificans; tungsten prevents the development of these enzyme activities. The wild type forms a membrane protein M r150,000 when incubated with tungsten and inducers of nitrate reductase and this is presumed to represent an inactive form of the enzyme. Suspensions of mutant M-1 did not develop nitrate reductase or formate dehydrogenase activities but the membrane protein M r150,000 was formed under all conditions tested, including without inducers and without molybdenum. Analysis of membranes, solubilized with deoxycholate, by polyacrylamide gel electrophoresis under nondenaturing conditions showed that the mutant protein had similar electrophoretic mobility to the active nitrate reductase formed by the wilde type. Autoradiography of preparations from cells incubated with 55Fe showed that the mutant and wild type proteins contained iron. However, in similar experiments with 99Mo, incorporation of molybdenum into the mutant protein was not detectable.We conclude that mutant M-1 is defective in one or more steps required to process molybdenum for incorporation into molybdoenzymes. This failure affects the normal regulation of nitrate reductase protein with respect to the role of inducers.Non-Standard Abbreviations DOC deoxycholate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   
8.
Reaction of [WVIS4]2− with ethane-1,2-dithiol edtH2 in the presence of the sulfide scavenger Cd2+ yielded the dinuclear tungstate syn-[{(edt)WV(O/S)}2(μ-S)2]2− (1), with the terminal S/O disordered over the two tungsten sites in the ratio 0.8:02. In the presence of thiocyanate, phosphine and CuI, the anionic cuboidal clusters of composition [{(SCN)3WV}2{CuI(PPh3)}23-S)4]2− (2) and (3, diphos = 1,2-bis(o-diphenylphosphinophenyl)ethane), and possibly via an intermediate [{(SCN)3WVS}2(μ-S)2]4−. The crystal and molecular structures of [Et4N]21, [Et4N]22 · H2O and [Et4N]23 · H2O have been determined.  相似文献   
9.
Two new tetrahedral tungsten cyanide cluster compounds, [Cu(dien)]3[W4Te4(CN)12] · 9H2O (1) (dien=diethylenetriamine) and [Ni(en)(NH3)]3[W4Se4(CN)12] · 7.5H2O (2) (en=ethylenediamine), were synthesized by treating aqueous solutions of the saltlike cluster compound K6[W4Te4(CN)12] · 5H2O/K6[W4Se4(CN)12] · 6H2O with copper(II)/nickel(II) chloride in aqueous ammonia containing dien/en. The cyano-bridged layered coordination polymeric compounds were characterized by single-crystal X-ray diffraction analysis: monoclinic, space group P21 for 1; trigonal, space group for 2. Structures of 1 and 2 consist of infinite neutral layers of cluster components {W4Te4(CN)12}/{W4Se4(CN)12} connected, one another by {Cu(dien)} or {Ni(en)(NH3)} fragments, respectively.  相似文献   
10.
Bis(pyridine) complexes of molybdenum and tungsten, [M(η3-allyl)Cl(CO)2(NC5H5)2] (M=Mo; 3-Mo, M=W; 3-W), reacted with an equimolar amount of lithiated amidinate, Li[(PhN)2CR] (R=H; 4a-Li, R = CH3; 4b-Li), to yield corresponding amidinato(pyridine) complexes, [M(η3-allyl){(PhN)2CR}(CO)2(NC5H5)] (M=Mo, R=H; 5a-Mo, M=Mo, R=CH3; 5b-Mo, M=W, R=H; 5a-W), as a yellow solid. The dissociation of pyridine ligand from the central metal in complexes 5a was observed in a polar solvent such as acetonitrile. In these cases, although the formation of amidinato(acetonitrile) complexes, [M(η3-allyl){(PhN)2CH}(CO)2(NCMe)] (M=Mo; 6a-Mo, M=W; 6a-W), was suggested spectroscopically, isolation of complexes 6a was not successful but the re-formation of pyridine complexes 5a was observed. In the reactions of complexes 5a with PEt3 and with P(OMe)3, the substitution reactions easily took place to give [M(η3-allyl){(PhN)2CH}(CO)2(PEt3)] (M=Mo; 7a-Mo, M=W; 7a-W) and [M(η3-allyl){(PhN)2CH}(CO)2{P(OMe)3}] (M=Mo; 8a-Mo, M=W; 8a-W), respectively. These complexes were characterized spectroscopically as well as, in some cases, by X-ray analyses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号