首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  1982年   1篇
  1981年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Vitamin B12 is an essential micronutrient synthesized by microorganisms. Mammals including humans have evolved ways for transport and absorption of this vitamin. Deficiency of vitamin B12 (either due to low intake or polymorphism in genes involved in absorption and intracellular transport of this vitamin) has been associated with various complex diseases. Genome-wide association studies have recently identified several common single nucleotide polymorphisms (SNPs) in fucosyl transferase 2 gene (FUT2) to be associated with levels of vitamin B12—the strongest association was with a non-synonymous SNP rs602662 in this gene. In the present study, we attempted to replicate the association of this SNP (rs602662) in an Indian population since a significant proportion has been reported to have low levels of vitamin B12 in this population. A total of 1146 individuals were genotyped for this SNP using a single base extension method and association with levels of vitamin B12 was assessed in these individuals. Regression analysis was performed to analyze the association considering various confounding factors like for age, sex, diet, hypertension, diabetes mellitus and coronary artery disease status. We found that the SNP rs602662 was significantly associated with the levels of vitamin B12 (p value < 0.0001). We also found that individuals adhering to a vegetarian diet with GG (homozygous major genotype) have significantly lower levels of vitamin B12 in these individuals. Thus, our study reveals that vegetarian diet along with polymorphism in the FUT2 gene may contribute significantly to the high prevalence of vitamin B12 deficiency in India.  相似文献   
2.
Purified human transcobalamin II receptor (TC II-R) binds to megalin, a 600 kDa endocytic receptor with an association constant, K(a), of 66 n M and bound(max) of 1.1 mole of TC II-R/mole of megalin both in the presence and absence of its ligand, transcobalamin II (TC II). Immunoprecipitation followed by immunoblotting of Triton X-100 extracts of the apical brush border membrane (BBM) from rabbit renal cortex revealed association of these two proteins. (35)[S]-TC II complexed with cobalamin (Cbl; Vitamin B(12)) bound to Sepharose-megalin affinity matrix and the binding was enhanced 5-fold when TC II-R was prebound to megalin. Megalin antiserum inhibited both the TC II-R-dependent and -independent binding of (35)[S]-TC II-Cbl to megalin, while TC II-R antiserum inhibited only the TC II-R-dependent binding. In rabbits with circulating antiserum to megalin, renal apical BBM megalin was present as an immune complex, but its levels were not altered. However, the protein levels of both TC II-R and the cation-independent mannose 6-phosphate receptor (CIMPR) were drastically reduced and the urinary excretion of TC II, albumin, and other low-molecular weight proteins was significantly increased. These results suggest that megalin contains a distinct single high-affinity binding site for TC II-R and their association in the native renal BBM is important for tubular reabsorption of many proteins, including TC II.  相似文献   
3.
Briddon A 《Amino acids》2003,24(1-2):1-12
It is becoming increasingly clear that serum vitamin B12 (cobalamin) concentration is a dubious indicator of functional B12 status and, in contrast to long-standing convention, correlates poorly with haematological indices. This, in turn, has led to poorly defined reference intervals for serum B12. Patients presenting with neurological disturbance due to B12 deficiency are at risk of not being diagnosed if total reliance is placed on serum B12 levels and haematological parameters. Plasma homocysteine remethylation is uniquely placed at the metabolic end-point of B12 metabolism such that plasma total homocysteine is proving to be a sensitive marker of functional B12 status. Studies also show that plasma homocysteine correlates better with holotranscobalamin than serum B12. It is suggested that clinicians should cease to be guided by surrogate haematological markers when more specific tests of B12 deficiency, such as holotranscobalamin and total homocysteine, exist. These tests demand greater prevalence in routine diagnostic use.  相似文献   
4.
The clinical phenotype of cobalamin (Cbl) deficiency is dictated by the essential role of this vitamin in two key enzymatic reactions. Multiple proteins and receptors participate in the absorption, transport and delivery of this vitamin to tissue cells. Cellular uptake of Cbl is mediated by transcobalamin (TC), a plasma protein and a transmembrane receptor (TCblR) with high affinity for TC saturated with Cbl. Knockdown of TCblR with siRNA results in decreased TC–Cbl uptake. The ensuing Cbl deficiency leads to an increase in doubling time and decreased proliferation of these cells. The study confirms the seminal role of this receptor in the cellular uptake of Cbl and its down-regulation as a potential strategy to inhibit proliferation of cancer cells.  相似文献   
5.
Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding affinity for the cobalamin analog cobinamide. Like haptocorrin and transcobalamin, the trout cobalamin-binding protein was present in plasma and recognized ligands with altered nucleotide moiety. Like intrinsic factors, the trout cobalamin-binding protein was present in the stomach and resisted degradation by trypsin and chymotrypsin. It also resembled intrinsic factor in the composition of conserved residues in the primary cobalamin-binding site in the C terminus. The trout cobalamin-binding protein was glycosylated and displayed spectral properties comparable with those of haptocorrin and intrinsic factor. In conclusion, only one soluble cobalamin-binding protein was identified in the rainbow trout, a protein that structurally behaves like an intermediate between the three human cobalamin-binding proteins.  相似文献   
6.
Selected residues in a highly conserved 15-residue region, 174SVDTAAMAGLAFTC L188 of human transcobalamin (TC), a cobalamin (Cbl: vitamin B12) binding protein, were subjected to site-directed mutagenesis. The mutant constructs were expressed in TC-deficient fibroblasts or in vitro to assess the effect of these mutations on Cbl binding. Phylogenetic analyses and protein parsimony indicated that TC evolved earlier than other mammalian Cbl-binding proteins, intrinsic factor and haptocorrins, and divergence occurred between mouse/rat and human dispersing TC gene to different chromosomes. These studies show that (a) two of the three polar residues, S174, T177, or D176 and two of the three conserved alanine residues, A179 and A184 present in the 15-residue evolutionary conserved region are essential for Cbl-binding by human TC, and (b) TC gene is transferred in a syntenic manner to different chromosomes, at least before the divergence of mouse/rat and human.  相似文献   
7.
Purified human placental transcobalamin II receptor (TC II-R) dimer of molecular mass 124 kDa bound to Sepharose-linked bacterial immunoglobulin (IgG) binding proteins protein A, protein G, and protein A/G. TC II-R dimer was detected directly, by blotting human placental and rabbit and rat kidney membrane proteins with 125I-protein A, or indirectly, using antiserum to TC II-R or IgG-Fc region and 125I-protein. TC II-R antiserum, but not protein A, protein G, protein A/G, or antiserum to the IgG-Fc region, when added to culture medium of human intestinal epithelial Caco-2 cells or umbilical vein endothelial cells, inhibited ligand binding. However, protein A, protein G, protein A/G, or antiserum to the Fc region inhibited the internalization of the ligand TC II-[57Co]cyanocobalamin. Taken together, these studies strongly suggest TC II-R is an IgG-like molecule that contains an Fc-like region which is important in ligand internalization but not binding.  相似文献   
8.
Cellular uptake of vitamin B(12) (cobalamin, Cbl) is mediated by a receptor expressed on the plasma membrane that binds transcobalamin (TC) saturated with Cbl and internalizes the TC-Cbl by endocytosis. A few reports have described the characterization of the receptor protein. However, many discrepancies have emerged in the functional and structural properties of the receptor and therefore, the identity and primary structure of this protein remains unconfirmed. In this report, we provide evidence of a 58 kDa monomeric protein as the likely receptor for the uptake of TC-Cbl and that the functional activity is not associated with a 72/144 kDa monomer/dimer with immunoglobulin Fc structural domain that has been purported to be the receptor in a number of publications.  相似文献   
9.
The uptake of R-type cobalamin-binding protein from human granulocytes and plasma by isolated parenchymal rat liver cells has been studied. When [57Co]cyanocobalamin-saturated granulocyte-binding protein or transcobalamin III was incubated with the liver cells in a concentration of 500 pM, more than 80% of the vitamin was taken up in 1 h. Vitamin B-12 bound to plasma transcobalamin I, however, was not taken up unless the protein was desialylated by neuraminidase from Vibrio cholerae. The uptake of iodinated pure granulocyte-binding protein, saturated with cobalamin, reached 100% and was accompanied by increasing intracellular proteolytic degradation of the binding protein. EGTA and asialo-orosomucoid completely inhibited this process of uptake and degradation, whereas partial inhibition was caused by chloroquine and colchicine. These observations provide evidence that these (asialo)-R-type cobalamin-binding proteins are taken up by the cell through the plasma membrane receptor for asialoglycoproteins by means of endocytosis followed by proteolysis of the binding protein in the lysosomes.  相似文献   
10.
25 mg of human holo-transcobalamin II with a specific cobalamin-binding capacity of 0.95 mol cobalamin/mol TC II was purified from 122 kg Cohn fraction III with a yield of 73% and a purification factor of 9.34 · 105. Consecutive purification steps comprised CM-Sephadex batchwise ion-exchange chromatography, affinity chromatography, using cyanocobalamin as a ligand, thermolabilly attached to 3.3′-diaminodipropylamine-substituted CH-Sepharose, and gel filtration. The high yield of the purification procedure was achieved by improving the stability of apo-transcobalamin II in the eluate of the CM-Sephadex, and by a few other modifications of a former procedure. In the latter, rapid denaturation of apo-transcobalamin II prohibited the use of long term affinity chromatography, which is obligatory for processing large amounts of Cohn fraction. In addition, subfractionation of transcobalamin II into smaller fragments which occurred in SDS-polyacrylamide gel electrophoresis in previous studies, was now reduced, indicating that proteolysis in the CM-Sephadex eluate had been prevented effectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号