首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
The exposure to acute or chronic endoplasmic reticulum (ER) stress has been known to induce dysfunction of islets, leading to apoptosis. The reduction of ER stress in islet isolation for transplantation is critical for islet protection. In this study, we investigated whether tauroursodeoxycholate (TUDCA) could inhibit ER stress induced by thapsigargin, and restore the decreased glucose stimulation index of islets. In pig islets, thapsigargin decreased the insulin secretion by high glucose stimulation in a time-dependent manner (1 h, 1.35 ± 0.16; 2 h, 1.21 ± 0.13; 4 h, 1.17 ± 0.16 vs. 0 h, 1.81 ± 0.15, n = 4, < 0.05, respectively). However, the treatment of TUDCA restored the decreased insulin secretion index induced by thapsigargin (thapsigargin, 1.25 ± 0.12 vs. thapsigargin + TUDCA, 2.13 ± 0.19, n = 5, < 0.05). Furthermore, the culture of isolated islets for 24 h with TUDCA significantly reduced the rate of islet regression (37.4 ± 5.8% vs. 14.5 ± 6.4%, n = 12, < 0.05). The treatment of TUDCA enhanced ATP contents in islets (27.2 ± 3.2 pmol/20IEQs vs. 21.7 ± 2.8 pmol/20IEQs, n = 9, < 0.05). The insulin secretion index by high glucose stimulation is also increased by treatment of TUDCA (2.42 ± 0.15 vs. 1.92 ± 0.12, n = 12, < 0.05). Taken together, we suggest that TUDCA could be a useful agent for islet protection in islet isolation for transplantation.  相似文献   
3.
4.
Exposure of cell lines endogenously expressing the thyroid hormone activating enzyme type 2 deiodinase (D2) to the chemical chaperones tauroursodeoxycholic acid (TUDCA) or 4-phenylbutiric acid (4-PBA) increases D2 expression, activity and T3 production. In brown adipocytes, TUDCA or 4-PBA induced T3-dependent genes and oxygen consumption (∼2-fold), an effect partially lost in D2 knockout cells. In wild type, but not in D2 knockout mice, administration of TUDCA lowered the respiratory quotient, doubled brown adipose tissue D2 activity and normalized the glucose intolerance associated with high fat feeding. Thus, D2 plays a critical role in the metabolic effects of chemical chaperones.  相似文献   
5.
We report a sensitive and robust method to determine cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), and their taurine- and glycine-conjugate concentrations in human plasma using liquid chromatography–tandem mass spectrometry. Activated charcoal was utilized to prepare bile acid-free plasma, which served as the biological matrix for the preparation of standard and quality control samples. Plasma sample preparation involved solid-phase extraction. A total of 16 bile acids and 5 internal standards were separated on a reverse column by gradient elution and detected by tandem mass spectrometry in negative ion mode. The calibration curve was linear for all the bile acids over a range of 0.005–5 μmol/L. The extraction recoveries for all the analytes fell in the range of 88–101%. Intra-day and inter-day coefficients of variation were all below 10%. A stability test showed that all the bile acids were stable in plasma for at least 6 h at room temperature, at least three freeze–thaw cycles, in the −70 °C or −20 °C freezer for 2 months, and also in the reconstitution solution at 8 °C for 48 h. Comparison of the matrix effect of bile acid-free plasma with that of real plasma indicated that the charcoal purification procedure did not affect the properties of charcoal-purified plasma as calibration matrix. This method has been used to determine the bile acid concentrations in more than 300 plasma samples from healthy individuals. In conclusion, this method is suitable for the simultaneous quantification of individual bile acids in human plasma.  相似文献   
6.
STARD10, a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) protein family, is highly expressed in the liver and has been shown to transfer phosphatidylcholine. Therefore it has been assumed that STARD10 may function in the secretion of phospholipids into the bile. To help elucidate the physiological role of STARD10, we produced Stard10 knockout mice (Stard10−/−) and studied their phenotype. Neither liver content nor biliary secretion of phosphatidylcholine was altered in Stard10−/− mice. Unexpectedly, the biliary secretion of bile acids from the liver and the level of taurine-conjugated bile acids in the bile were significantly higher in Stard10−/− mice than wild type (WT) mice. In contrast, the levels of the secondary bile acids were lower in the liver of Stard10−/− mice, suggesting that the enterohepatic cycling is impaired. STARD10 was also expressed in the gallbladder and small intestine where the expression level of apical sodium dependent bile acid transporter (ASBT) turned out to be markedly lower in Stard10−/− mice than in WT mice when measured under fed condition. Consistent with the above results, the fecal excretion of bile acids was significantly increased in Stard10−/− mice. Interestingly, PPARα-dependent genes responsible for the regulation of bile acid metabolism were down-regulated in the liver of Stard10/ mice. The loss of STARD10 impaired the PPARα activity and the expression of a PPARα-target gene such as Cyp8b1 in mouse hepatoma cells. These results indicate that STARD10 is involved in regulating bile acid metabolism through the modulation of PPARα-mediated mechanism.  相似文献   
7.
Several neurodegenerative diseases are caused by defects in protein folding, including Alzheimer, Parkinson, Huntington, and prion diseases. Once a disease-specific protein misfolds, it can then form toxic aggregates which accumulate in the brain, leading to neuronal dysfunction, cell death, and clinical symptoms. Although significant advances have been made toward understanding the mechanisms of protein aggregation, there are no curative treatments for any of these diseases. Since protein misfolding and the accumulation of aggregates are the most upstream events in the pathological cascade, rescuing or stabilizing the native conformations of proteins is an obvious therapeutic strategy. In recent years, small molecules known as chaperones have been shown to be effective in reducing levels of misfolded proteins, thus minimizing the accumulation of aggregates and their downstream pathological consequences. Chaperones are classified as molecular, pharmacological, or chemical. In this mini-review we summarize the modes of action of different chemical chaperones and discuss evidence for their efficacy in the treatment of protein folding diseases in vitro and in vivo.  相似文献   
8.
9.
The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called “ER matrices” together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress. Indeed, inhibition of Rab7a expression by siRNA or expression of the dominant negative mutant Rab7aT22?N, leads to enlargement of sheet-like ER structures and spreading towards the cell periphery. Notably, such alterations are ascribable neither to a direct modulation of the ER shaping proteins Reticulon-4b and CLIMP63, nor to interactions with Protrudin, a Rab7a-binding protein known to affect the ER organization. Conversely, depletion of Rab7a leads to basal ER stress, in turn causing ER membrane expansion. Both ER enlargement and basal ER stress are reverted in rescue experiments by Rab7a re-expression, as well as by the ER chemical chaperone tauroursodeoxycholic acid (TUDCA). Collectively, these findings reveal a new role of Rab7a in ER homeostasis, and indicate that genetic and pharmacological ER stress manipulation may restore ER morphology in Rab7a silenced cells.  相似文献   
10.
Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号