首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2014年   3篇
  2013年   4篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1994年   2篇
  1993年   1篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1976年   6篇
  1975年   1篇
  1973年   5篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
1.
The role of the primary amino groups of lysine sidechains in Ca2+ binding to calreticulin was evaluated by chemical modification of the amino group with 2,4,6-trinitrobenzenesulfonic acid (TNBS). TNBS binding to calreticulin could be described by two steps: (i) a fast reaction, with low affinity, and (ii) a slow reaction with a relatively high affinity. Inclusion of Ca2+ and/or Mg2+ decreased both the amount of TNBS bound to calreticulin and the apparent affinity constant of the slower reaction. In contrast, the properties of the faster reaction for TNBS binding were not sensitive to Ca2+ and/or Mg2+. Analysis of TNBS binding to the carboxyl-terminal (C-domain) and aminoterminal (N-domain) of calreticulin revealed that theC-domain andN-domain are responsible for the slow and fast component of the TNBS binding, respectively. In keeping with this, in the presence of Ca2+, TNBS binding to theC-domain was significantly reduced, whereas modification of theN-domain was unaffected. TNBS modification of calreticulin significantly decreased Ca2+ binding to the low affinity/high capacity Ca2+ binding site(s) which are localized to theC-domain but had no effect on the high affinity/low capacity Ca2+ binding localized to theN-domain.In theC-domain of calreticulin, which contains the low affinity/high capacity Ca2+ binding sites, acidic residues are interspersed at regular intervals with one or more positively charged lysine and arginine residues. Our results indicate that the aminogroups of the lysine sidechains in theC-domain of calreticulin have a role in the low affinity/high capacity Ca2+ binding that is characteristic of this region of the protein and which is proposed to contribute significantly to the capacity of the endoplasmic reticulum Ca2+ store. (Mol Cell Biochem130: 19–28, 1994)Abbreviations TNBS 2,4,6-Trinitrobenzenesulfonic Acid - GST Glutathione S-Transferase - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - EDTA Ethylenediaminetetraacetic Acid - EGTA Ethylene Glycol bis(-aminoethylether)-N,N,N,N-tetraacetic Acid - MOPS 4-Morpholinepropanesulfonic Acid  相似文献   
2.
Oxidative modification of lipoproteins may play a crucial role in the pathogenesis of atherosclerosis. This study was designed to examine whether increased lipid peroxides and/or oxidative susceptibility of plasma lipoproteins occur in patients with coronary artery disease. The levels of lipid peroxides, estimated as thiobarbituric acid-reactive substances (TBARS), were significantly greater in the plasma and very low density lipoprotein (VLDL) of symptomatic patients with coronary artery disease than in those of healthy persons, but the TBARS levels of low density lipoprotein (LDL) and high density lipoprotein (HDL) showed insignificant difference between patients and normals. To evaluate the oxidative susceptibility of lipoproteins, we employed in vitro Cu2+ oxidation of lipoproteins monitored by changes in fluorescenece, TBARS level, trinitrobenzene sulfonic acid (TNBS) reactivity, apolipoprotein immunoreactivity and agarose gel electrophoretic mobility. While VLDL and LDL of normal controls were oxidazed at 5–10 μM Cu2+, pooled VLDL and LDL of patients with coronary artery disease were oxidized at 1–2.5 μM Cu2+, i.e., at relatively lowver oxidative stress. At 5 μM Cu2+, VLDL and LDL of patients with coronary artery disease still showed at faster oxidation rate, judged by the rate of fluorescence increase, higher TBARS level, less TNBS reactivity, greater change in apo B immunoreactivity and higher electrophoretic mobility than those of normal controls. However, the difference on the oxidizability of HDL was insignificant for patients vs. normals. In conclusion, we have shown that plasm VLDL and LDL of patients with coronary artery disease are more susceptible to in vitro oxidative modification than those of health persons. The data suggest that enhanced oxidizability of plasma lipoproteins may be important factor influencing the development of coronary artery disease.  相似文献   
3.
A thymic peptide previously found to recruit thymocytes from G1 into S phase has been purified from a crude thymic extract by subsequent steps of gel exclusion chromatography and reverse phase high performance liquid chromatography (HPLC). The purified material, which appeared homogeneous on thin-layer chromatography and HPLC, stimulated the DNA synthesis of cultured guinea pig thymocytes in a nanomolar concentration range. The amino acid composition revealed a high content of acidic amino acids and no apparent homology to previously defined growth factors and thymus differentiation hormones.  相似文献   
4.
Analysis of the lipids of normal hamster embryo fibroblasts and polyoma virus transformed fibroblasts shows a decrease in phosphatidylcholine and phosphatidylethanolamine and a marked increase in a threonine phospholipid after transformation. Transformed cells also react differently with fluorodinitrobenzene and trinitrobenzenesulfonate. phosphatidylethanolamine of transformed cells reacts to a greater extent with both probes. Phosphatidylserine and the threonine phospholipid of both cells do not react with trinitrobenzenesulfonate. The threonine phospholipid is provisionally identified as phosphatidylthreonine.  相似文献   
5.
Erythrocytes of the rare human blood group En(a?) lack the major sialoglycoprotein, glycophorin A, and the cell population heterozygous for the En(a) antigen contain half the normal amount of glycophorin A. With such cells we have studied whether glycophorin A influences the phospholipid composition and the availability of aminophospholipids to external labeling reagents. We here demonstrate that the amounts of all phospholipids are closely similar in normal and variant membranes. However, using the amino-reactive reagent trinitrobenzenesulfonate, we show that phosphatidylethanolamine is more easily labeled in intact En(a?) cells as compared to normal cells, whereas phosphatidylethanolamine shows an intermediate labeling in En(a) heterozygous cells.  相似文献   
6.
E. coli cells were reacted with TNBS in bicarbonate-NaCl buffer, pH 8.5 (buffer A) and in phosphate-NaCl buffer, pH 7.0 (buffer B). In buffer A, DNP-GPE is the major product when FDNB is used. DNP-PE and DNP-LPE are formed in lesser amounts. Phospholipase A activity is high in buffer A. When TNBS is used, the labeling of the lipid components is less than with FDNB and more TNP-PE is formed relative to TNP-GPE. This data suggests that the phospholipases which are located primarily on the outer L-membrane of the cell wall act to a lesser extent on TNP-PE than on DNP-PE. E. coli cells were prelabeled with TNBS and FDNB in buffer A, washed and incubated in buffer A. The endogenous labeled DNP-PE gradually decreased with time with a concomitant increase in DNP-LPE and DNP-GPE due to phospholipase A activity. In contrast, the endogenous labeled TNP-PE also decreased with time as did the endogenous labeled TNP-LPE but a new orange lipid was produced. This lipid is believed to be a derivative of TNP-PE in which one of the nitro groups has been reduced to an amino group by nitroreductase. E. coli cells were prelabeled with TNBS and FDNB in buffer A, washed and incubated in buffer B. Under these conditions with both TNBS and FDNB there is an increase in TNP-PE and DNP-PE with a concomitant decrease in TNP-LPE, TNP-GPE, DNP-LPE and DNP-GPE. These results show that at neutral pH acylation occurs to regenerate TNP-PE and DNP-PE. E. coli cells were incubated with exogenous DNP-GPE or TNP-GPE in buffer A. The DNP-GPE and TNP-GPE were rapidly hydrolyzed by a phosphodiesterase to DNP-ethanolamine and TNP-ethanolamine. An orange derivative was formed which was provisionally identified as a derivative of DNP-ethanolamine or TNP-ethanolamine in which a nitro group has been reduced to an amino group by nitroreductase. The phospholipases and acylating enzymes present in the cell wall of E. coli are active on the dinitrophenyl and trinitrophenyl derivatives of PE and LPE and may act in concert to model and repair the plasma membrane.  相似文献   
7.
The amino reagent 2,4,6-trinitrobenzenesulfonate (TNBS) was found to inactivate mitochondrial F1-ATPase through covalent labeling, which was not reversed by dithiothreitol. The observed rate of inactivation was retarded by inorganic phosphate, but enhanced by prior labeling of F1 with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1). These observations are consistent with the presence of an essential amino group near the bound inorganic phosphate at the catalytic site of F1. A comparison of the observed protection of F1 from NBD-C1 and 5′-p-fluorosulfonyl-benzoyladenosine (FSBA) respectively by inorganic phosphate and by 2′,3′-O-(2,4,6-trinitrophenyl)adenosine 5′-monophosphate (TNP-AMP) suggests that NBD-C1 labels an essential Tyr residue in the positively charged locus for binding the polyphosphate end of ATP, and that FSBA labels an essential Tyr residue in the more hydrophobic locus for binding the adenosine moiety of ATP at the catalytic site of F1.  相似文献   
8.
The relationship between the binding patterns of soybean agglutinin, peanut agglutinin (both in their native (unaggregated) form and in their polymerized form), and of Phaseolus vulgaris leucoagglutinin, to neuraminidase-treated lymphocytes from different sources, and the mitogenic activity of these lectins, was studied. In all cases investigated, binding of a lectin to lymphocytes which resulted in stimulation was a positive cooperative process. Our findings support the assumption that clustering of receptors and conformational changes in membrane structure are prerequisites for mitogenic stimulation.  相似文献   
9.
10.
Phosphate transport across the chloroplast envelope is rapidly inactivated by the amino-group reagent 2,4,6-trinitrobenzene sulfonate. Subsequent exposure to [3H]NaBH4 leads to an incorporation of the trinitrophenyl moiety into envelope membrane preparations. From the membrane proteins only a polypeptide with 29000 dalton molecular weight is labelled. The inactivation of phosphate transport and the incorporation of radioactivity are both specifically reduced by the presence of substrates.The results lead to the conclusion that a polypeptide with a molecular weight of 29000 dalton and containing a lysyl residue at the substrate binding site is involved in the phosphate translocator function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号