首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2014年   2篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2000年   1篇
  1999年   1篇
  1997年   4篇
  1995年   3篇
排序方式: 共有40条查询结果,搜索用时 203 毫秒
1.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   
2.
The gating and conduction properties of a channel activated by intracellular Na+ were studied by recording unitary currents in inside-out patches excised from lobster olfactory receptor neurons. Channel openings to a single conductance level of 104 pS occurred in bursts. The open probability of the channel increased with increasing concentrations of Na+. At 210 mm Na+, membrane depolarization increased the open probability e-fold per 36.6 mV. The distribution of channel open times could be fit by a single exponential with a time constant of 4.09 msec at −60 mV and 90 mm Na+. The open time constant was not affected by the concentration of Na+, but was increased by membrane depolarization. At 180 mm Na+ and −60 mV, the distribution of channel closed times could be fit by the sum of four exponentials with time constants of 0.20, 1.46, 8.92 and 69.9 msec, respectively. The three longer time constants decreased, while the shortest time constant did not vary with the concentration of Na+. Membrane depolarization decreased all four closed time constants. Burst duration was unaffected by the concentration of Na+, but was increased by membrane depolarization. Permeability for monovalent cations relative to that of Na+ (P X /P Na ), calculated from the reversal potential, was: Li+ (1.11) > Na+ (1.0) > K+ (0.54) > Rb+ (0.36) > Cs+ (0.20). Extracellular divalent cations (10 mm) blocked the inward Na+ current at −60 mV according to the following sequence: Mn2+ > Ca2+ > Sr2+ > Mg2+ > Ba2+. Relative permeabilities for divalent cations (P Y /P Na ) were Ca2+ (39.0) > Mg2+ (34.1) > Mn2+ (15.5) > Ba2+ (13.8) > Na+ (1.0). Both the reversal potential and the conductance determined in divalent cation-free mixtures of Na+ and Cs+ or Li+ were monotonic functions of the mole fraction, suggesting that the channel is a single-ion pore that behaves as a multi-ion pore when the current is carried exclusively by divalent cations. The properties of the channel are consistent with the channel playing a role in odor activation of these primary receptor neurons. Received: 17 September 1996/Revised: 15 November 1996  相似文献   
3.
Demuro A  Parker I 《Cell calcium》2003,34(6):499-509
Functional studies of single membrane ion channels were made possible by the introduction of the patch-clamp technique, which allows single-channel currents to be measured with unprecedented resolution. Nevertheless, patch clamping has some limitations: including the need for physical access of the patch pipette, possible disruption of local cellular architecture, inability to monitor multiple channels, and lack of spatial information. Here, we demonstrate the use of confocal fluorescence microscopy as a non-invasive technique to optically monitor the gating of individual Ca2+ channels. Near-membrane fluorescence signals track the gating of N-type Ca2+ channels with a kinetic resolution of about 10ms, provide a simultaneous and independent readout from several channels, and allow their locations to be mapped with sub-micrometer spatial resolution. Optical single-channel recording should be applicable to diverse voltage- and ligand-gated Ca2+-permeable channels, and has the potential for high-throughput functional analysis of single channels.  相似文献   
4.

Background

5-Hydroxydecanoate (5-HD) inhibits preconditioning, and it is assumed to be a selective inhibitor of mitochondrial ATP-sensitive K+ (mitoKATP) channels. However, 5-HD is a substrate for mitochondrial outer membrane acyl-CoA synthetase, which catalyzes the reaction: 5?HD + CoA + ATP → 5-HD-CoA (5-hydroxydecanoyl-CoA) + AMP + pyrophosphate. We aimed to determine whether the reactants or principal product of this reaction modulate sarcolemmal KATP (sarcKATP) channel activity.

Methods

Single sarcKATP channel currents were measured in inside-out patches excised from rat ventricular myocytes. In addition, sarcKATP channel activity was recorded in whole-cell configuration or in giant inside-out patches excised from oocytes expressing Kir6.2/SUR2A.

Results

5-HD inhibited (IC50 ∼ 30 μM) KATP channel activity, albeit only in the presence of (non-inhibitory) concentrations of ATP. Similarly, when the inhibitory effect of 0.2 mM ATP was reversed by 1 μM oleoyl-CoA, subsequent application of 5-HD blocked channel activity, but no effect was seen in the absence of ATP. Furthermore, we found that 1 μM coenzyme A (CoA) inhibited sarcKATP channels. Using giant inside-out patches, which are weakly sensitive to “contaminating” CoA, we found that Kir6.2/SUR2A channels were insensitive to 5-HD-CoA. In intact myocytes, 5-HD failed to reverse sarcKATP channel activation by either metabolic inhibition or rilmakalim.

General significance

SarcKATP channels are inhibited by 5-HD (provided that ATP is present) and CoA but insensitive to 5-HD-CoA. 5-HD is equally potent at “directly” inhibiting sarcKATP and mitoKATP channels. However, in intact cells, 5-HD fails to inhibit sarcKATP channels, suggesting that mitochondria are the preconditioning-relevant targets of 5-HD.  相似文献   
5.
The biophysical characteristics and the pore formation dynamics of synthetic or naturally occurring peptides forming membrane-spanning channels were investigated by using isolated photoreceptor rod outer segments (OS) recorded in whole-cell configuration. Once blocking the two OS endogenous conductances (the cGMP channels by light and the Na+:Ca2+,K+ exchanger by removing one of the transported ion species from both sides of the membrane, i.e. K+, Na+ or Ca2+), the OS membrane resistance (R m ) was typically larger than 1 GΩ in the presence of 1 mM external Ca2+. Therefore, any exogenous current could be studied down to the single channel level. The peptides were applied to (and removed from) the extracellular OS side in ∼50 ms with a computer-controlled microperfusion system, in which every perfusion parameter, as the rate of solution flow, the temporal sequence of solution changes or the number of automatic, self-washing cycles were controlled by a user-friendly interface. This technique was then used to determine the biophysical properties and the pore formation dynamics of antibiotic peptaibols, as the native alamethicin mixture, the synthesized major component of the neutral fraction (F50/5) of alamethicin, and the synthetic trichogin GA IV.  相似文献   
6.
An E224G mutation of the Kir2.1 channel generates intrinsic inward rectification and single-channel fluctuations in the absence of intracellular blockers. In this study, we showed that positively charged residues H226, R228 and R260, near site 224, regulated the intrinsic inward rectification and single-channel properties of the E224G mutant. By carrying out systematic mutations, we found that the charge effect on the intrinsic inward rectification and single-channel conductance is consistent with a long-range electrostatic mechanism. A Kir1.1 channel where the site equivalent to E224 in the Kir2.1 channel is a glycine residue does not show inward rectification or single-channel fluctuations. The G223K and N259R mutations of the Kir1.1 channel induced intrinsic inward rectification and reduced the single-channel conductance but did not generate large open-channel fluctuations. Substituting the cytoplasmic pore of the E224G mutant into the Kir1.1 channel induced open-channel fluctuations and intrinsic inward rectification. The single-channel conductance of the E224G mutant showed inward rectification. Also, a voltage-dependent gating mechanism decreased open probability during depolarization and contributed to the intrinsic inward rectification in the E224G mutant. In addition to an electrostatic effect, a close interaction of K+ with channel pore may be required for generating open-channel fluctuations in the E224G mutant.  相似文献   
7.
We are interested in the properties of the target site of cholinergic anti-nematodal drugs for therapeutic reasons. The target receptors are ligand-gated ion channels that have different subtypes, and each subtype may have a different pharmacology. In a contraction assay using the parasitic nematode Ascaris suum, our laboratory has identified several subtypes, including an N-subtype, preferentially activated by nicotine, and an L-subtype, preferentially activated by levamisole. Here we use patch-clamp recordings to test the hypothesis that the single-channel selectivities of nicotine and levamisole are different. Unitary currents evoked by nicotine in this preparation were characterised for the first time. In some patches, both nicotine and levamisole activated small- and large-conductance channels. In other patches, the agonists activated just one channel amplitude. Discriminant analysis allowed classification of the one-conductance patch channels into the small or large categories, based on sets defined by the two-conductance patch data. The small channels had a conductance of 26.1+/-1.5 pS, n=18 (mean+/-SEM); the large conductance channels had a conductance of 38.8+/-1.2 pS, n=23 (mean+/-SEM). Analysis of amplitude histograms of the two-conductance patches showed that nicotine preferentially activated the small-conductance channels and levamisole preferentially activated the large-conductance channels. Our observations suggest that the N-subtype receptor channel has a conductance of 26 pS channel and the L-subtype receptor channel has a conductance of 39 pS.  相似文献   
8.
The two-pore K2P channel family comprises TASK, TREK, TWIK, TRESK, TALK, and THIK subfamilies, and TALK-1, TALK-2, and TASK-2 are functional members of the TALK subfamily. Here we report for the first time the single-channel properties of TALK-2 and its pHo sensitivity, and compare them to those of TALK-1 and TASK-2. In transfected COS-7 cells, the three TALK K2P channels could be identified easily by their differences in single-channel conductance and gating kinetics. The single-channel conductances of TALK-1, TALK-2, and TASK-2 in symmetrical 150 mM KCl were 21, 33, and 70 pS (-60 mV), respectively. TALK-2 was sensitive mainly to the alkaline range (pH 7-10), whereas TALK-1 and TASK-2 were sensitive to a wider pHo range (6-10). The effect of pH changes was mainly on the opening frequency. Thus, members of the TALK family expressed in native tissues may be identified based on their single-channel kinetics and pHo sensitivity.  相似文献   
9.
Single-channel recordings were used to study the modulation of stretch-activated channels (SACs) by intracellular adenosine nucleotides in identified leech neurons. These channels exhibited two activity modes, spike-like (SL) and multiconductance (MC), displaying different polymodal activation. In the absence of mechanical stimulation, internal perfusion of excised patches with ATP induced robust and reversible activation of the MC but not of the SL mode. The ATP effect on channel activity was dose-dependent within a range of 1 μM-1 mM and was induced at different values of intracellular pH and Ca2+. The non-hydrolyzable ATP analog AMP-PNP, ATP without Mg2+ or ADP also effectively enhanced MC activity. Adenosine mimicked the effect of its nucleotides. At negative membrane potentials, both ATP and adenosine activated the channel. Moreover, ATP but not adenosine induced a flickering block. Addition of cAMP during maximal ATP activation completely and reversibly inhibited the channel, with activation and deactivation times of minutes. However, cAMP alone only induced a weak and rapid channel activation, without inhibitory effects. The expression of these channels in the growth cones of leech neurons, their permeability to Ca2+ and their sensitivity to intracellular cAMP are consistent with a role in the Ca2+ oscillations associated with cell growth.  相似文献   
10.
We have investigated the interactions between synthetic amphipathic peptides and zwitterionic model membranes. Peptides with 14 and 21 amino acids composed of leucines and phenylalanines modified by the addition of crown ethers have been synthesized. The 14-mer and 21-mer peptides both possess a helical amphipathic structure as revealed by circular dichroism. To shed light on their mechanism of membrane interaction, different complementary biophysical techniques have been used such as circular dichroism, fluorescence, membrane conductivity measurement and NMR spectroscopy. Results obtained by these different techniques show that the 14-mer peptide is a membrane perturbator that facilitate the leakage of species such as calcein and Na ions, while the 21-mer peptide acts as an ion channel. 31P solid-state NMR experiments on multilamellar vesicles reveal that the dynamics and/or orientation of the polar headgroups are greatly affected by the presence of the peptides. Similar results have also been obtained in mechanically oriented DLPC and DMPC bilayers where different acyl chain lengths seem to play a role in the interaction. On the other hand, 2H NMR experiments on multilamellar vesicles demonstrate that the acyl chain order is affected differently by the two peptides. Based on these studies, mechanisms of action are proposed for the 14-mer and 21-mer peptides with zwitterionic membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号